Jorge Castellanos-Soriano, Francisco Garnes-Portolés, M. Consuelo Jiménez, Antonio Leyva-Pérez* and Raúl Pérez-Ruiz*,
{"title":"内流异质三重-三重湮没上转换","authors":"Jorge Castellanos-Soriano, Francisco Garnes-Portolés, M. Consuelo Jiménez, Antonio Leyva-Pérez* and Raúl Pérez-Ruiz*, ","doi":"10.1021/acsphyschemau.3c00062","DOIUrl":null,"url":null,"abstract":"<p >Photon upconversion based on triplet–triplet annihilation (TTA-UC) is an attractive wavelength conversion with increasing use in organic synthesis in the homogeneous phase; however, this technology has not performed with canonical solid catalysts yet. Herein, a BOPHY dye covalently anchored on silica is successfully used as a sensitizer in a TTA system that efficiently catalyzes Mizoroki–Heck coupling reactions. This procedure has enabled the implementation of in-flow reaction conditions for the synthesis of a variety of aromatic compounds, and mechanistic proof has been obtained by means of transient absorption spectroscopy.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"4 3","pages":"242–246"},"PeriodicalIF":3.7000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.3c00062","citationCount":"0","resultStr":"{\"title\":\"In-Flow Heterogeneous Triplet–Triplet Annihilation Upconversion\",\"authors\":\"Jorge Castellanos-Soriano, Francisco Garnes-Portolés, M. Consuelo Jiménez, Antonio Leyva-Pérez* and Raúl Pérez-Ruiz*, \",\"doi\":\"10.1021/acsphyschemau.3c00062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Photon upconversion based on triplet–triplet annihilation (TTA-UC) is an attractive wavelength conversion with increasing use in organic synthesis in the homogeneous phase; however, this technology has not performed with canonical solid catalysts yet. Herein, a BOPHY dye covalently anchored on silica is successfully used as a sensitizer in a TTA system that efficiently catalyzes Mizoroki–Heck coupling reactions. This procedure has enabled the implementation of in-flow reaction conditions for the synthesis of a variety of aromatic compounds, and mechanistic proof has been obtained by means of transient absorption spectroscopy.</p>\",\"PeriodicalId\":29796,\"journal\":{\"name\":\"ACS Physical Chemistry Au\",\"volume\":\"4 3\",\"pages\":\"242–246\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.3c00062\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Physical Chemistry Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsphyschemau.3c00062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Physical Chemistry Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphyschemau.3c00062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Photon upconversion based on triplet–triplet annihilation (TTA-UC) is an attractive wavelength conversion with increasing use in organic synthesis in the homogeneous phase; however, this technology has not performed with canonical solid catalysts yet. Herein, a BOPHY dye covalently anchored on silica is successfully used as a sensitizer in a TTA system that efficiently catalyzes Mizoroki–Heck coupling reactions. This procedure has enabled the implementation of in-flow reaction conditions for the synthesis of a variety of aromatic compounds, and mechanistic proof has been obtained by means of transient absorption spectroscopy.
期刊介绍:
ACS Physical Chemistry Au is an open access journal which publishes original fundamental and applied research on all aspects of physical chemistry. The journal publishes new and original experimental computational and theoretical research of interest to physical chemists biophysical chemists chemical physicists physicists material scientists and engineers. An essential criterion for acceptance is that the manuscript provides new physical insight or develops new tools and methods of general interest. Some major topical areas include:Molecules Clusters and Aerosols; Biophysics Biomaterials Liquids and Soft Matter; Energy Materials and Catalysis