{"title":"巴罗熵中的恒定卷胀模型","authors":"M. Faruk Karabat","doi":"10.1142/s0219887824501226","DOIUrl":null,"url":null,"abstract":"<p>In this work, we study a constant-roll inflation model embedded in the Barrow entropy scenario. In this regards, we derive the modified of the Friedmann–Robertson–Walker (FRW) universe from the Barrow entropy using the first law of thermodynamics for the apparent horizon of the universe. We consider the inflation dynamics of the early universe under the constant-roll condition where the inflation is driven by a power-law scalar potential field, <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>V</mi></mrow><mrow><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Φ</mi><mo stretchy=\"false\">)</mo></mrow></msub><mo>=</mo><msup><mrow><mi mathvariant=\"normal\">Φ</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span>. We calculated the tensor-to-scalar ratio <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>r</mi></math></span><span></span> and scalar spectral index <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>n</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span><span></span> by applying the constant-roll condition with some other parameters and compared them with the Planck 2020 observable data. To reveal the effect of the Barrow parameter <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Δ</mi></math></span><span></span> on the inflation, we fixed the constant-roll inflation parameter as <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>γ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>1</mn><mn>4</mn></math></span><span></span> and focused on the exponent of potential in the range <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mn>0</mn><mo><</mo><mi>n</mi><mo><</mo><mn>1</mn></math></span><span></span>. We observed that as the value of the Barrow parameter approaches zero in the range <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mn>0</mn><mo>≤</mo><mi mathvariant=\"normal\">Δ</mi><mo>≤</mo><mn>1</mn></math></span><span></span>, a long and sufficient inflation occurs, consistent with the observation data. This strengthens the claim that the observable values of the Barrow parameter occur at very small values. In addition, the obtained results were also examined numerically.</p>","PeriodicalId":50320,"journal":{"name":"International Journal of Geometric Methods in Modern Physics","volume":"52 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The constant-roll inflation model in Barrow entropy\",\"authors\":\"M. Faruk Karabat\",\"doi\":\"10.1142/s0219887824501226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, we study a constant-roll inflation model embedded in the Barrow entropy scenario. In this regards, we derive the modified of the Friedmann–Robertson–Walker (FRW) universe from the Barrow entropy using the first law of thermodynamics for the apparent horizon of the universe. We consider the inflation dynamics of the early universe under the constant-roll condition where the inflation is driven by a power-law scalar potential field, <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>V</mi></mrow><mrow><mo stretchy=\\\"false\\\">(</mo><mi mathvariant=\\\"normal\\\">Φ</mi><mo stretchy=\\\"false\\\">)</mo></mrow></msub><mo>=</mo><msup><mrow><mi mathvariant=\\\"normal\\\">Φ</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span>. We calculated the tensor-to-scalar ratio <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>r</mi></math></span><span></span> and scalar spectral index <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>n</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span><span></span> by applying the constant-roll condition with some other parameters and compared them with the Planck 2020 observable data. To reveal the effect of the Barrow parameter <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"normal\\\">Δ</mi></math></span><span></span> on the inflation, we fixed the constant-roll inflation parameter as <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>γ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>1</mn><mn>4</mn></math></span><span></span> and focused on the exponent of potential in the range <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>0</mn><mo><</mo><mi>n</mi><mo><</mo><mn>1</mn></math></span><span></span>. We observed that as the value of the Barrow parameter approaches zero in the range <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>0</mn><mo>≤</mo><mi mathvariant=\\\"normal\\\">Δ</mi><mo>≤</mo><mn>1</mn></math></span><span></span>, a long and sufficient inflation occurs, consistent with the observation data. This strengthens the claim that the observable values of the Barrow parameter occur at very small values. In addition, the obtained results were also examined numerically.</p>\",\"PeriodicalId\":50320,\"journal\":{\"name\":\"International Journal of Geometric Methods in Modern Physics\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Geometric Methods in Modern Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219887824501226\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geometric Methods in Modern Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0219887824501226","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
The constant-roll inflation model in Barrow entropy
In this work, we study a constant-roll inflation model embedded in the Barrow entropy scenario. In this regards, we derive the modified of the Friedmann–Robertson–Walker (FRW) universe from the Barrow entropy using the first law of thermodynamics for the apparent horizon of the universe. We consider the inflation dynamics of the early universe under the constant-roll condition where the inflation is driven by a power-law scalar potential field, . We calculated the tensor-to-scalar ratio and scalar spectral index by applying the constant-roll condition with some other parameters and compared them with the Planck 2020 observable data. To reveal the effect of the Barrow parameter on the inflation, we fixed the constant-roll inflation parameter as and focused on the exponent of potential in the range . We observed that as the value of the Barrow parameter approaches zero in the range , a long and sufficient inflation occurs, consistent with the observation data. This strengthens the claim that the observable values of the Barrow parameter occur at very small values. In addition, the obtained results were also examined numerically.
期刊介绍:
This journal publishes short communications, research and review articles devoted to all applications of geometric methods (including commutative and non-commutative Differential Geometry, Riemannian Geometry, Finsler Geometry, Complex Geometry, Lie Groups and Lie Algebras, Bundle Theory, Homology an Cohomology, Algebraic Geometry, Global Analysis, Category Theory, Operator Algebra and Topology) in all fields of Mathematical and Theoretical Physics, including in particular: Classical Mechanics (Lagrangian, Hamiltonian, Poisson formulations); Quantum Mechanics (also semi-classical approximations); Hamiltonian Systems of ODE''s and PDE''s and Integrability; Variational Structures of Physics and Conservation Laws; Thermodynamics of Systems and Continua (also Quantum Thermodynamics and Statistical Physics); General Relativity and other Geometric Theories of Gravitation; geometric models for Particle Physics; Supergravity and Supersymmetric Field Theories; Classical and Quantum Field Theory (also quantization over curved backgrounds); Gauge Theories; Topological Field Theories; Strings, Branes and Extended Objects Theory; Holography; Quantum Gravity, Loop Quantum Gravity and Quantum Cosmology; applications of Quantum Groups; Quantum Computation; Control Theory; Geometry of Chaos.