Qusai Khraisha, Sophie Put, Johanna Kappenberg, Azza Warraitch, Kristin Hadfield
{"title":"大型语言模型能否在系统综述中取代人类?评估 GPT-4 从多语种同行评审和灰色文献中筛选和提取数据的功效。","authors":"Qusai Khraisha, Sophie Put, Johanna Kappenberg, Azza Warraitch, Kristin Hadfield","doi":"10.1002/jrsm.1715","DOIUrl":null,"url":null,"abstract":"<p>Systematic reviews are vital for guiding practice, research and policy, although they are often slow and labour-intensive. Large language models (LLMs) could speed up and automate systematic reviews, but their performance in such tasks has yet to be comprehensively evaluated against humans, and no study has tested Generative Pre-Trained Transformer (GPT)-4, the biggest LLM so far. This pre-registered study uses a “human-out-of-the-loop” approach to evaluate GPT-4's capability in title/abstract screening, full-text review and data extraction across various literature types and languages. Although GPT-4 had accuracy on par with human performance in some tasks, results were skewed by chance agreement and dataset imbalance. Adjusting for these caused performance scores to drop across all stages: for data extraction, performance was moderate, and for screening, it ranged from none in highly balanced literature datasets (~1:1) to moderate in those datasets where the ratio of inclusion to exclusion in studies was imbalanced (~1:3). When screening full-text literature using highly reliable prompts, GPT-4's performance was more robust, reaching “human-like” levels. Although our findings indicate that, currently, substantial caution should be exercised if LLMs are being used to conduct systematic reviews, they also offer preliminary evidence that, for certain review tasks delivered under specific conditions, LLMs can rival human performance.</p>","PeriodicalId":226,"journal":{"name":"Research Synthesis Methods","volume":"15 4","pages":"616-626"},"PeriodicalIF":5.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrsm.1715","citationCount":"0","resultStr":"{\"title\":\"Can large language models replace humans in systematic reviews? Evaluating GPT-4's efficacy in screening and extracting data from peer-reviewed and grey literature in multiple languages\",\"authors\":\"Qusai Khraisha, Sophie Put, Johanna Kappenberg, Azza Warraitch, Kristin Hadfield\",\"doi\":\"10.1002/jrsm.1715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Systematic reviews are vital for guiding practice, research and policy, although they are often slow and labour-intensive. Large language models (LLMs) could speed up and automate systematic reviews, but their performance in such tasks has yet to be comprehensively evaluated against humans, and no study has tested Generative Pre-Trained Transformer (GPT)-4, the biggest LLM so far. This pre-registered study uses a “human-out-of-the-loop” approach to evaluate GPT-4's capability in title/abstract screening, full-text review and data extraction across various literature types and languages. Although GPT-4 had accuracy on par with human performance in some tasks, results were skewed by chance agreement and dataset imbalance. Adjusting for these caused performance scores to drop across all stages: for data extraction, performance was moderate, and for screening, it ranged from none in highly balanced literature datasets (~1:1) to moderate in those datasets where the ratio of inclusion to exclusion in studies was imbalanced (~1:3). When screening full-text literature using highly reliable prompts, GPT-4's performance was more robust, reaching “human-like” levels. Although our findings indicate that, currently, substantial caution should be exercised if LLMs are being used to conduct systematic reviews, they also offer preliminary evidence that, for certain review tasks delivered under specific conditions, LLMs can rival human performance.</p>\",\"PeriodicalId\":226,\"journal\":{\"name\":\"Research Synthesis Methods\",\"volume\":\"15 4\",\"pages\":\"616-626\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrsm.1715\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Synthesis Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1715\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Synthesis Methods","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1715","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Can large language models replace humans in systematic reviews? Evaluating GPT-4's efficacy in screening and extracting data from peer-reviewed and grey literature in multiple languages
Systematic reviews are vital for guiding practice, research and policy, although they are often slow and labour-intensive. Large language models (LLMs) could speed up and automate systematic reviews, but their performance in such tasks has yet to be comprehensively evaluated against humans, and no study has tested Generative Pre-Trained Transformer (GPT)-4, the biggest LLM so far. This pre-registered study uses a “human-out-of-the-loop” approach to evaluate GPT-4's capability in title/abstract screening, full-text review and data extraction across various literature types and languages. Although GPT-4 had accuracy on par with human performance in some tasks, results were skewed by chance agreement and dataset imbalance. Adjusting for these caused performance scores to drop across all stages: for data extraction, performance was moderate, and for screening, it ranged from none in highly balanced literature datasets (~1:1) to moderate in those datasets where the ratio of inclusion to exclusion in studies was imbalanced (~1:3). When screening full-text literature using highly reliable prompts, GPT-4's performance was more robust, reaching “human-like” levels. Although our findings indicate that, currently, substantial caution should be exercised if LLMs are being used to conduct systematic reviews, they also offer preliminary evidence that, for certain review tasks delivered under specific conditions, LLMs can rival human performance.
期刊介绍:
Research Synthesis Methods is a reputable, peer-reviewed journal that focuses on the development and dissemination of methods for conducting systematic research synthesis. Our aim is to advance the knowledge and application of research synthesis methods across various disciplines.
Our journal provides a platform for the exchange of ideas and knowledge related to designing, conducting, analyzing, interpreting, reporting, and applying research synthesis. While research synthesis is commonly practiced in the health and social sciences, our journal also welcomes contributions from other fields to enrich the methodologies employed in research synthesis across scientific disciplines.
By bridging different disciplines, we aim to foster collaboration and cross-fertilization of ideas, ultimately enhancing the quality and effectiveness of research synthesis methods. Whether you are a researcher, practitioner, or stakeholder involved in research synthesis, our journal strives to offer valuable insights and practical guidance for your work.