类冯-牛曼光子处理器及其在研究混沌量子特征中的应用。

IF 19.4 1区 物理与天体物理 Q1 Physics and Astronomy Light, science & applications Pub Date : 2024-03-14 DOI:10.1038/s41377-024-01413-5
Shang Yu, Wei Liu, Si-Jing Tao, Zhi-Peng Li, Yi-Tao Wang, Zhi-Peng Zhong, Raj B Patel, Yu Meng, Yuan-Ze Yang, Zhao-An Wang, Nai-Jie Guo, Xiao-Dong Zeng, Zhe Chen, Liang Xu, Ning Zhang, Xiao Liu, Mu Yang, Wen-Hao Zhang, Zong-Quan Zhou, Jin-Shi Xu, Jian-Shun Tang, Yong-Jian Han, Chuan-Feng Li, Guang-Can Guo
{"title":"类冯-牛曼光子处理器及其在研究混沌量子特征中的应用。","authors":"Shang Yu, Wei Liu, Si-Jing Tao, Zhi-Peng Li, Yi-Tao Wang, Zhi-Peng Zhong, Raj B Patel, Yu Meng, Yuan-Ze Yang, Zhao-An Wang, Nai-Jie Guo, Xiao-Dong Zeng, Zhe Chen, Liang Xu, Ning Zhang, Xiao Liu, Mu Yang, Wen-Hao Zhang, Zong-Quan Zhou, Jin-Shi Xu, Jian-Shun Tang, Yong-Jian Han, Chuan-Feng Li, Guang-Can Guo","doi":"10.1038/s41377-024-01413-5","DOIUrl":null,"url":null,"abstract":"<p><p>Photonic quantum computation plays an important role and offers unique advantages. Two decades after the milestone work of Knill-Laflamme-Milburn, various architectures of photonic processors have been proposed, and quantum advantage over classical computers has also been demonstrated. It is now the opportune time to apply this technology to real-world applications. However, at current technology level, this aim is restricted by either programmability in bulk optics or loss in integrated optics for the existing architectures of processors, for which the resource cost is also a problem. Here we present a von-Neumann-like architecture based on temporal-mode encoding and looped structure on table, which is capable of multimode-universal programmability, resource-efficiency, phase-stability and software-scalability. In order to illustrate these merits, we execute two different programs with varying resource requirements on the same processor, to investigate quantum signature of chaos from two aspects: the signature behaviors exhibited in phase space (13 modes), and the Fermi golden rule which has not been experimentally studied in quantitative way before (26 modes). The maximal program contains an optical interferometer network with 1694 freely-adjustable phases. Considering current state-of-the-art, our architecture stands as the most promising candidate for real-world applications.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":null,"pages":null},"PeriodicalIF":19.4000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10940704/pdf/","citationCount":"0","resultStr":"{\"title\":\"A von-Neumann-like photonic processor and its application in studying quantum signature of chaos.\",\"authors\":\"Shang Yu, Wei Liu, Si-Jing Tao, Zhi-Peng Li, Yi-Tao Wang, Zhi-Peng Zhong, Raj B Patel, Yu Meng, Yuan-Ze Yang, Zhao-An Wang, Nai-Jie Guo, Xiao-Dong Zeng, Zhe Chen, Liang Xu, Ning Zhang, Xiao Liu, Mu Yang, Wen-Hao Zhang, Zong-Quan Zhou, Jin-Shi Xu, Jian-Shun Tang, Yong-Jian Han, Chuan-Feng Li, Guang-Can Guo\",\"doi\":\"10.1038/s41377-024-01413-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photonic quantum computation plays an important role and offers unique advantages. Two decades after the milestone work of Knill-Laflamme-Milburn, various architectures of photonic processors have been proposed, and quantum advantage over classical computers has also been demonstrated. It is now the opportune time to apply this technology to real-world applications. However, at current technology level, this aim is restricted by either programmability in bulk optics or loss in integrated optics for the existing architectures of processors, for which the resource cost is also a problem. Here we present a von-Neumann-like architecture based on temporal-mode encoding and looped structure on table, which is capable of multimode-universal programmability, resource-efficiency, phase-stability and software-scalability. In order to illustrate these merits, we execute two different programs with varying resource requirements on the same processor, to investigate quantum signature of chaos from two aspects: the signature behaviors exhibited in phase space (13 modes), and the Fermi golden rule which has not been experimentally studied in quantitative way before (26 modes). The maximal program contains an optical interferometer network with 1694 freely-adjustable phases. Considering current state-of-the-art, our architecture stands as the most promising candidate for real-world applications.</p>\",\"PeriodicalId\":18093,\"journal\":{\"name\":\"Light, science & applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.4000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10940704/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light, science & applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-024-01413-5\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light, science & applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41377-024-01413-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

光子量子计算具有重要作用和独特优势。在克尼尔-拉弗兰梅-米尔本(Knill-Laflamme-Milburn)的里程碑式研究成果问世二十年后,各种光子处理器架构已被提出,与经典计算机相比的量子优势也已得到证实。现在正是将这项技术应用于现实世界的大好时机。然而,就目前的技术水平而言,这一目标受到现有处理器架构的限制,要么是散装光学的可编程性,要么是集成光学的损耗,而资源成本也是一个问题。在此,我们提出了一种基于时态模式编码和表循环结构的类冯-牛曼体系结构,它具有多模式通用可编程性、资源效率、相位稳定性和软件可扩展性。为了说明这些优点,我们在同一处理器上执行了两个不同资源需求的程序,从两个方面研究混沌的量子特征:在相空间(13 种模式)中表现出的特征行为,以及之前未进行过定量实验研究的费米黄金法则(26 种模式)。最大程序包含一个具有 1694 个可自由调节相位的光学干涉仪网络。考虑到当前最先进的技术,我们的架构是现实世界应用中最有前途的候选方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A von-Neumann-like photonic processor and its application in studying quantum signature of chaos.

Photonic quantum computation plays an important role and offers unique advantages. Two decades after the milestone work of Knill-Laflamme-Milburn, various architectures of photonic processors have been proposed, and quantum advantage over classical computers has also been demonstrated. It is now the opportune time to apply this technology to real-world applications. However, at current technology level, this aim is restricted by either programmability in bulk optics or loss in integrated optics for the existing architectures of processors, for which the resource cost is also a problem. Here we present a von-Neumann-like architecture based on temporal-mode encoding and looped structure on table, which is capable of multimode-universal programmability, resource-efficiency, phase-stability and software-scalability. In order to illustrate these merits, we execute two different programs with varying resource requirements on the same processor, to investigate quantum signature of chaos from two aspects: the signature behaviors exhibited in phase space (13 modes), and the Fermi golden rule which has not been experimentally studied in quantitative way before (26 modes). The maximal program contains an optical interferometer network with 1694 freely-adjustable phases. Considering current state-of-the-art, our architecture stands as the most promising candidate for real-world applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
27.00
自引率
2.60%
发文量
331
审稿时长
20 weeks
期刊介绍: Light: Science & Applications is an open-access, fully peer-reviewed publication.It publishes high-quality optics and photonics research globally, covering fundamental research and important issues in engineering and applied sciences related to optics and photonics.
期刊最新文献
Extended-depth of field random illumination microscopy, EDF-RIM, provides super-resolved projective imaging. Publisher Correction: Photon shifting and trapping in perovskite solar cells for improved efficiency and stability. Electrically tunable planar liquid-crystal singlets for simultaneous spectrometry and imaging. Sub-picosecond, strain-tunable, polarization-selective optical switching via anisotropic exciton dynamics in quasi-1D ZrSe3. Ultrafast near-infrared pyroelectric detector based on inhomogeneous plasmonic metasurface.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1