{"title":"叶绿体 ATP 合酶:从结构到工程。","authors":"Thilo Rühle, Dario Leister, Viviana Pasch","doi":"10.1093/plcell/koae081","DOIUrl":null,"url":null,"abstract":"<p><p>F-type ATP synthases are extensively researched protein complexes because of their widespread and central role in energy metabolism. Progress in structural biology, proteomics, and molecular biology has also greatly advanced our understanding of the catalytic mechanism, post-translational modifications, and biogenesis of chloroplast ATP synthases. Given their critical role in light-driven ATP generation, tailoring the activity of chloroplast ATP synthases and modeling approaches can be applied to modulate photosynthesis. In the future, advances in genetic manipulation and protein design tools will significantly expand the scope for testing new strategies in engineering light-driven nanomotors.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":"3974-3996"},"PeriodicalIF":10.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449085/pdf/","citationCount":"0","resultStr":"{\"title\":\"Chloroplast ATP synthase: From structure to engineering.\",\"authors\":\"Thilo Rühle, Dario Leister, Viviana Pasch\",\"doi\":\"10.1093/plcell/koae081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>F-type ATP synthases are extensively researched protein complexes because of their widespread and central role in energy metabolism. Progress in structural biology, proteomics, and molecular biology has also greatly advanced our understanding of the catalytic mechanism, post-translational modifications, and biogenesis of chloroplast ATP synthases. Given their critical role in light-driven ATP generation, tailoring the activity of chloroplast ATP synthases and modeling approaches can be applied to modulate photosynthesis. In the future, advances in genetic manipulation and protein design tools will significantly expand the scope for testing new strategies in engineering light-driven nanomotors.</p>\",\"PeriodicalId\":20186,\"journal\":{\"name\":\"Plant Cell\",\"volume\":\" \",\"pages\":\"3974-3996\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449085/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plcell/koae081\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plcell/koae081","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
由于 F 型 ATP 合酶在能量代谢中发挥着广泛而核心的作用,因此对其蛋白质复合物进行了广泛的研究。结构生物学、蛋白质组学和分子生物学方面的进展也极大地促进了我们对叶绿体 ATP 合酶的催化机理、翻译后修饰和生物生成的了解。鉴于叶绿体 ATP 合成酶在光驱动 ATP 生成过程中的关键作用,调整叶绿体 ATP 合成酶的活性和建模方法可用于调节光合作用。未来,基因操作和蛋白质设计工具的进步将大大扩展光驱动纳米发动机工程新策略的测试范围。
Chloroplast ATP synthase: From structure to engineering.
F-type ATP synthases are extensively researched protein complexes because of their widespread and central role in energy metabolism. Progress in structural biology, proteomics, and molecular biology has also greatly advanced our understanding of the catalytic mechanism, post-translational modifications, and biogenesis of chloroplast ATP synthases. Given their critical role in light-driven ATP generation, tailoring the activity of chloroplast ATP synthases and modeling approaches can be applied to modulate photosynthesis. In the future, advances in genetic manipulation and protein design tools will significantly expand the scope for testing new strategies in engineering light-driven nanomotors.
期刊介绍:
Title: Plant Cell
Publisher:
Published monthly by the American Society of Plant Biologists (ASPB)
Produced by Sheridan Journal Services, Waterbury, VT
History and Impact:
Established in 1989
Within three years of publication, ranked first in impact among journals in plant sciences
Maintains high standard of excellence
Scope:
Publishes novel research of special significance in plant biology
Focus areas include cellular biology, molecular biology, biochemistry, genetics, development, and evolution
Primary criteria: articles provide new insight of broad interest to plant biologists and are suitable for a wide audience
Tenets:
Publish the most exciting, cutting-edge research in plant cellular and molecular biology
Provide rapid turnaround time for reviewing and publishing research papers
Ensure highest quality reproduction of data
Feature interactive format for commentaries, opinion pieces, and exchange of information in review articles, meeting reports, and insightful overviews.