{"title":"再生医学中的静态磁场。","authors":"Wenjing Xie, Chao Song, Ruowen Guo, Xin Zhang","doi":"10.1063/5.0191803","DOIUrl":null,"url":null,"abstract":"<p><p>All organisms on Earth live in the weak but ubiquitous geomagnetic field. Human beings are also exposed to magnetic fields generated by multiple sources, ranging from permanent magnets to magnetic resonance imaging (MRI) in hospitals. It has been shown that different magnetic fields can generate various effects on different tissues and cells. Among them, stem cells appear to be one of the most sensitive cell types to magnetic fields, which are the fundamental units of regenerative therapies. In this review, we focus on the bioeffects of static magnetic fields (SMFs), which are related to regenerative medicine. Most reports in the literature focus on the influence of SMF on bone regeneration, wound healing, and stem cell production. Multiple aspects of the cellular events, including gene expression, cell signaling pathways, reactive oxygen species, inflammation, and cytoskeleton, have been shown to be affected by SMFs. Although no consensus yet, current evidence indicates that moderate and high SMFs could serve as a promising physical tool to promote bone regeneration, wound healing, neural differentiation, and dental regeneration. All <i>in vivo</i> studies of SMFs on bone regeneration and wound healing have shown beneficial effects, which unravel the great potential of SMFs in these aspects. More mechanistic studies, magnetic field parameter optimization, and clinical investigations on human bodies will be imperative for the successful clinical applications of SMFs in regenerative medicine.</p>","PeriodicalId":46288,"journal":{"name":"APL Bioengineering","volume":"8 1","pages":"011503"},"PeriodicalIF":6.6000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10939708/pdf/","citationCount":"0","resultStr":"{\"title\":\"Static magnetic fields in regenerative medicine.\",\"authors\":\"Wenjing Xie, Chao Song, Ruowen Guo, Xin Zhang\",\"doi\":\"10.1063/5.0191803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>All organisms on Earth live in the weak but ubiquitous geomagnetic field. Human beings are also exposed to magnetic fields generated by multiple sources, ranging from permanent magnets to magnetic resonance imaging (MRI) in hospitals. It has been shown that different magnetic fields can generate various effects on different tissues and cells. Among them, stem cells appear to be one of the most sensitive cell types to magnetic fields, which are the fundamental units of regenerative therapies. In this review, we focus on the bioeffects of static magnetic fields (SMFs), which are related to regenerative medicine. Most reports in the literature focus on the influence of SMF on bone regeneration, wound healing, and stem cell production. Multiple aspects of the cellular events, including gene expression, cell signaling pathways, reactive oxygen species, inflammation, and cytoskeleton, have been shown to be affected by SMFs. Although no consensus yet, current evidence indicates that moderate and high SMFs could serve as a promising physical tool to promote bone regeneration, wound healing, neural differentiation, and dental regeneration. All <i>in vivo</i> studies of SMFs on bone regeneration and wound healing have shown beneficial effects, which unravel the great potential of SMFs in these aspects. More mechanistic studies, magnetic field parameter optimization, and clinical investigations on human bodies will be imperative for the successful clinical applications of SMFs in regenerative medicine.</p>\",\"PeriodicalId\":46288,\"journal\":{\"name\":\"APL Bioengineering\",\"volume\":\"8 1\",\"pages\":\"011503\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10939708/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0191803\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0191803","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
All organisms on Earth live in the weak but ubiquitous geomagnetic field. Human beings are also exposed to magnetic fields generated by multiple sources, ranging from permanent magnets to magnetic resonance imaging (MRI) in hospitals. It has been shown that different magnetic fields can generate various effects on different tissues and cells. Among them, stem cells appear to be one of the most sensitive cell types to magnetic fields, which are the fundamental units of regenerative therapies. In this review, we focus on the bioeffects of static magnetic fields (SMFs), which are related to regenerative medicine. Most reports in the literature focus on the influence of SMF on bone regeneration, wound healing, and stem cell production. Multiple aspects of the cellular events, including gene expression, cell signaling pathways, reactive oxygen species, inflammation, and cytoskeleton, have been shown to be affected by SMFs. Although no consensus yet, current evidence indicates that moderate and high SMFs could serve as a promising physical tool to promote bone regeneration, wound healing, neural differentiation, and dental regeneration. All in vivo studies of SMFs on bone regeneration and wound healing have shown beneficial effects, which unravel the great potential of SMFs in these aspects. More mechanistic studies, magnetic field parameter optimization, and clinical investigations on human bodies will be imperative for the successful clinical applications of SMFs in regenerative medicine.
期刊介绍:
APL Bioengineering is devoted to research at the intersection of biology, physics, and engineering. The journal publishes high-impact manuscripts specific to the understanding and advancement of physics and engineering of biological systems. APL Bioengineering is the new home for the bioengineering and biomedical research communities.
APL Bioengineering publishes original research articles, reviews, and perspectives. Topical coverage includes:
-Biofabrication and Bioprinting
-Biomedical Materials, Sensors, and Imaging
-Engineered Living Systems
-Cell and Tissue Engineering
-Regenerative Medicine
-Molecular, Cell, and Tissue Biomechanics
-Systems Biology and Computational Biology