ChatGPT, Llama, 你能帮我写报告吗?使用(本地)大型语言模型撰写辅助数字取证报告的实验

IF 2 4区 医学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Forensic Science International-Digital Investigation Pub Date : 2024-03-01 DOI:10.1016/j.fsidi.2023.301683
Gaëtan Michelet, Frank Breitinger
{"title":"ChatGPT, Llama, 你能帮我写报告吗?使用(本地)大型语言模型撰写辅助数字取证报告的实验","authors":"Gaëtan Michelet,&nbsp;Frank Breitinger","doi":"10.1016/j.fsidi.2023.301683","DOIUrl":null,"url":null,"abstract":"<div><p>Generative AIs, especially Large Language Models (LLMs) such as ChatGPT or Llama, have advanced significantly, positioning them as valuable tools for digital forensics. While initial studies have explored the potential of ChatGPT in the context of investigations, the question of to what extent LLMs can assist the forensic report writing process remains unresolved. To answer the question, this article first examines forensic reports with the goal of generalization (e.g., finding the ‘average structure’ of a report). We then evaluate the strengths and limitations of LLMs for generating the different parts of the forensic report using a case study. This work thus provides valuable insights into the automation of report writing, a critical facet of digital forensics investigations. We conclude that combined with thorough proofreading and corrections, LLMs may assist practitioners during the report writing process but at this point cannot replace them.</p></div>","PeriodicalId":48481,"journal":{"name":"Forensic Science International-Digital Investigation","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666281723002020/pdfft?md5=7fa170169dea7b2b53ba42a635e6e67e&pid=1-s2.0-S2666281723002020-main.pdf","citationCount":"0","resultStr":"{\"title\":\"ChatGPT, Llama, can you write my report? An experiment on assisted digital forensics reports written using (local) large language models\",\"authors\":\"Gaëtan Michelet,&nbsp;Frank Breitinger\",\"doi\":\"10.1016/j.fsidi.2023.301683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Generative AIs, especially Large Language Models (LLMs) such as ChatGPT or Llama, have advanced significantly, positioning them as valuable tools for digital forensics. While initial studies have explored the potential of ChatGPT in the context of investigations, the question of to what extent LLMs can assist the forensic report writing process remains unresolved. To answer the question, this article first examines forensic reports with the goal of generalization (e.g., finding the ‘average structure’ of a report). We then evaluate the strengths and limitations of LLMs for generating the different parts of the forensic report using a case study. This work thus provides valuable insights into the automation of report writing, a critical facet of digital forensics investigations. We conclude that combined with thorough proofreading and corrections, LLMs may assist practitioners during the report writing process but at this point cannot replace them.</p></div>\",\"PeriodicalId\":48481,\"journal\":{\"name\":\"Forensic Science International-Digital Investigation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666281723002020/pdfft?md5=7fa170169dea7b2b53ba42a635e6e67e&pid=1-s2.0-S2666281723002020-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic Science International-Digital Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666281723002020\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Digital Investigation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666281723002020","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

生成式人工智能,尤其是大型语言模型(LLM),如 ChatGPT 或 Llama,已经取得了长足的进步,成为数字取证的重要工具。虽然已有初步研究探索了 ChatGPT 在调查中的潜力,但 LLM 在多大程度上能协助法证报告撰写过程这一问题仍未解决。为了回答这个问题,本文首先以归纳为目标(例如,找到报告的 "平均结构")对法医报告进行了研究。然后,我们通过案例研究评估了 LLM 在生成法证报告不同部分时的优势和局限性。因此,这项工作为报告撰写自动化提供了宝贵的见解,而报告撰写自动化是数字取证调查的一个重要方面。我们的结论是,结合全面的校对和修正,LLM 可以在报告撰写过程中为从业人员提供帮助,但目前还不能取代他们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ChatGPT, Llama, can you write my report? An experiment on assisted digital forensics reports written using (local) large language models

Generative AIs, especially Large Language Models (LLMs) such as ChatGPT or Llama, have advanced significantly, positioning them as valuable tools for digital forensics. While initial studies have explored the potential of ChatGPT in the context of investigations, the question of to what extent LLMs can assist the forensic report writing process remains unresolved. To answer the question, this article first examines forensic reports with the goal of generalization (e.g., finding the ‘average structure’ of a report). We then evaluate the strengths and limitations of LLMs for generating the different parts of the forensic report using a case study. This work thus provides valuable insights into the automation of report writing, a critical facet of digital forensics investigations. We conclude that combined with thorough proofreading and corrections, LLMs may assist practitioners during the report writing process but at this point cannot replace them.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
15.00%
发文量
87
审稿时长
76 days
期刊最新文献
Temporal metadata analysis: A learning classifier system approach Uncertainty and error in location traces Competence in digital forensics “What you say in the lab, stays in the lab”: A reflexive thematic analysis of current challenges and future directions of digital forensic investigations in the UK Decoding digital interactions: An extensive study of TeamViewer's Forensic Artifacts across Windows and android platforms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1