Lojenaa Navanesan , Nhien-An Le-Khac , Mark Scanlon , Kasun De Zoysa , Asanka P. Sayakkara
{"title":"确保用于数字取证的电磁侧信道分析的跨设备可移植性","authors":"Lojenaa Navanesan , Nhien-An Le-Khac , Mark Scanlon , Kasun De Zoysa , Asanka P. Sayakkara","doi":"10.1016/j.fsidi.2023.301684","DOIUrl":null,"url":null,"abstract":"<div><p>Investigation on smart devices has become an essential subdomain in digital forensics. The inherent diversity and complexity of smart devices pose a challenge to the extraction of evidence without physically tampering with it, which is often a strict requirement in law enforcement and legal proceedings. Recently, this has led to the application of non-intrusive Electromagnetic Side-Channel Analysis (EM-SCA) as an emerging approach to extract forensic insights from smart devices. EM-SCA for digital forensics is still in its infancy, and has only been tested on a small number of devices so far. Most importantly, the question still remains whether Machine Learning (ML) models in EM-SCA are portable across multiple devices to be useful in digital forensics, i.e., <em>cross-device portability</em>. This study experimentally explores this aspect of EM-SCA using a wide set of smart devices. The experiments using various iPhones and Nordic Semiconductor nRF52-DK devices indicate that the direct application of pre-trained ML models across multiple identical devices does not yield optimal outcomes (under 20 % accuracy in most cases). Subsequent experiments included collecting distinct samples of EM traces from all the devices to train new ML models with mixed device data; this also fell short of expectations (still below 20 % accuracy). This prompted the adoption of transfer learning techniques, which showed promise for cross-model implementations. In particular, for the iPhone 13 and nRF52-DK devices, applying transfer learning techniques resulted in achieving the highest accuracy, with accuracy scores of 98 % and 96 %, respectively. This result makes a significant advancement in the application of EM-SCA to digital forensics by enabling the use of pre-trained models across identical or similar devices.</p></div>","PeriodicalId":48481,"journal":{"name":"Forensic Science International-Digital Investigation","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666281723002032/pdfft?md5=f602da7e26538dab7cb8dc04dbd22b4a&pid=1-s2.0-S2666281723002032-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Ensuring cross-device portability of electromagnetic side-channel analysis for digital forensics\",\"authors\":\"Lojenaa Navanesan , Nhien-An Le-Khac , Mark Scanlon , Kasun De Zoysa , Asanka P. Sayakkara\",\"doi\":\"10.1016/j.fsidi.2023.301684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Investigation on smart devices has become an essential subdomain in digital forensics. The inherent diversity and complexity of smart devices pose a challenge to the extraction of evidence without physically tampering with it, which is often a strict requirement in law enforcement and legal proceedings. Recently, this has led to the application of non-intrusive Electromagnetic Side-Channel Analysis (EM-SCA) as an emerging approach to extract forensic insights from smart devices. EM-SCA for digital forensics is still in its infancy, and has only been tested on a small number of devices so far. Most importantly, the question still remains whether Machine Learning (ML) models in EM-SCA are portable across multiple devices to be useful in digital forensics, i.e., <em>cross-device portability</em>. This study experimentally explores this aspect of EM-SCA using a wide set of smart devices. The experiments using various iPhones and Nordic Semiconductor nRF52-DK devices indicate that the direct application of pre-trained ML models across multiple identical devices does not yield optimal outcomes (under 20 % accuracy in most cases). Subsequent experiments included collecting distinct samples of EM traces from all the devices to train new ML models with mixed device data; this also fell short of expectations (still below 20 % accuracy). This prompted the adoption of transfer learning techniques, which showed promise for cross-model implementations. In particular, for the iPhone 13 and nRF52-DK devices, applying transfer learning techniques resulted in achieving the highest accuracy, with accuracy scores of 98 % and 96 %, respectively. This result makes a significant advancement in the application of EM-SCA to digital forensics by enabling the use of pre-trained models across identical or similar devices.</p></div>\",\"PeriodicalId\":48481,\"journal\":{\"name\":\"Forensic Science International-Digital Investigation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666281723002032/pdfft?md5=f602da7e26538dab7cb8dc04dbd22b4a&pid=1-s2.0-S2666281723002032-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic Science International-Digital Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666281723002032\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Digital Investigation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666281723002032","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Ensuring cross-device portability of electromagnetic side-channel analysis for digital forensics
Investigation on smart devices has become an essential subdomain in digital forensics. The inherent diversity and complexity of smart devices pose a challenge to the extraction of evidence without physically tampering with it, which is often a strict requirement in law enforcement and legal proceedings. Recently, this has led to the application of non-intrusive Electromagnetic Side-Channel Analysis (EM-SCA) as an emerging approach to extract forensic insights from smart devices. EM-SCA for digital forensics is still in its infancy, and has only been tested on a small number of devices so far. Most importantly, the question still remains whether Machine Learning (ML) models in EM-SCA are portable across multiple devices to be useful in digital forensics, i.e., cross-device portability. This study experimentally explores this aspect of EM-SCA using a wide set of smart devices. The experiments using various iPhones and Nordic Semiconductor nRF52-DK devices indicate that the direct application of pre-trained ML models across multiple identical devices does not yield optimal outcomes (under 20 % accuracy in most cases). Subsequent experiments included collecting distinct samples of EM traces from all the devices to train new ML models with mixed device data; this also fell short of expectations (still below 20 % accuracy). This prompted the adoption of transfer learning techniques, which showed promise for cross-model implementations. In particular, for the iPhone 13 and nRF52-DK devices, applying transfer learning techniques resulted in achieving the highest accuracy, with accuracy scores of 98 % and 96 %, respectively. This result makes a significant advancement in the application of EM-SCA to digital forensics by enabling the use of pre-trained models across identical or similar devices.