Christopher Hargreaves , Alex Nelson , Eoghan Casey
{"title":"数字取证分析工具的抽象模型--系统性错误缓解分析的基础","authors":"Christopher Hargreaves , Alex Nelson , Eoghan Casey","doi":"10.1016/j.fsidi.2023.301679","DOIUrl":null,"url":null,"abstract":"<div><p>As automation within digital forensic tools becomes more advanced there is a need for a systematic approach to ensure the validity, reliability, and standardization of digital forensic results. This paper argues for intermediate output in a standardized format within digital forensic tools to allow a methodical approach to tool validation that targets errors at each stage of processing. To achieve this, a detailed process model of digital forensic analysis tools is created, extrapolating the details of the internal processes performed by monolithic forensic tools. The research deconstructs the process flow within tools and presents an ‘abstract digital forensic tool’, revisiting earlier abstraction layer ideas. This not only identifies the interconnected processes within tools but allows discussion of the potential error that could be introduced at each stage, and how it could potentially propagate within a tool. A demonstration, with a dataset, is also included, structurally annotated using Cyber-investigation Analysis Standard Expression (CASE).</p></div>","PeriodicalId":48481,"journal":{"name":"Forensic Science International-Digital Investigation","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666281723001981/pdfft?md5=525c9cdc52e8d92ec005cd51f4e65163&pid=1-s2.0-S2666281723001981-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An abstract model for digital forensic analysis tools - A foundation for systematic error mitigation analysis\",\"authors\":\"Christopher Hargreaves , Alex Nelson , Eoghan Casey\",\"doi\":\"10.1016/j.fsidi.2023.301679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As automation within digital forensic tools becomes more advanced there is a need for a systematic approach to ensure the validity, reliability, and standardization of digital forensic results. This paper argues for intermediate output in a standardized format within digital forensic tools to allow a methodical approach to tool validation that targets errors at each stage of processing. To achieve this, a detailed process model of digital forensic analysis tools is created, extrapolating the details of the internal processes performed by monolithic forensic tools. The research deconstructs the process flow within tools and presents an ‘abstract digital forensic tool’, revisiting earlier abstraction layer ideas. This not only identifies the interconnected processes within tools but allows discussion of the potential error that could be introduced at each stage, and how it could potentially propagate within a tool. A demonstration, with a dataset, is also included, structurally annotated using Cyber-investigation Analysis Standard Expression (CASE).</p></div>\",\"PeriodicalId\":48481,\"journal\":{\"name\":\"Forensic Science International-Digital Investigation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666281723001981/pdfft?md5=525c9cdc52e8d92ec005cd51f4e65163&pid=1-s2.0-S2666281723001981-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic Science International-Digital Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666281723001981\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Digital Investigation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666281723001981","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
An abstract model for digital forensic analysis tools - A foundation for systematic error mitigation analysis
As automation within digital forensic tools becomes more advanced there is a need for a systematic approach to ensure the validity, reliability, and standardization of digital forensic results. This paper argues for intermediate output in a standardized format within digital forensic tools to allow a methodical approach to tool validation that targets errors at each stage of processing. To achieve this, a detailed process model of digital forensic analysis tools is created, extrapolating the details of the internal processes performed by monolithic forensic tools. The research deconstructs the process flow within tools and presents an ‘abstract digital forensic tool’, revisiting earlier abstraction layer ideas. This not only identifies the interconnected processes within tools but allows discussion of the potential error that could be introduced at each stage, and how it could potentially propagate within a tool. A demonstration, with a dataset, is also included, structurally annotated using Cyber-investigation Analysis Standard Expression (CASE).