Kristina Edenharter , Michel W. Jaworek , Vera Engelbrecht , Roland Winter , Thomas Happe
{"title":"压力下的 H2 生成:[FeFe]-氢化酶在高压环境中显示出强大的稳定性","authors":"Kristina Edenharter , Michel W. Jaworek , Vera Engelbrecht , Roland Winter , Thomas Happe","doi":"10.1016/j.bpc.2024.107217","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrogenases are a diverse group of metalloenzymes that catalyze the conversion of H<sub>2</sub> into protons and electrons and the reverse reaction. A subgroup is formed by the [FeFe]‑hydrogenases, which are the most efficient enzymes of microbes for catalytic H<sub>2</sub> conversion. We have determined the stability and activity of two [FeFe]‑hydrogenases under high temperature and pressure conditions employing FTIR spectroscopy and the high-pressure stopped-flow methodology in combination with fast UV/Vis detection. Our data show high temperature stability and an increase in activity up to the unfolding temperatures of the enzymes. Remarkably, both enzymes reveal a very high pressure stability of their structure, even up to pressures of several kbars. Their high pressure-stability enables high enzymatic activity up to 2 kbar, which largely exceeds the pressure limit encountered by organisms in the deep sea and sub-seafloor on Earth.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"308 ","pages":"Article 107217"},"PeriodicalIF":3.3000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301462224000462/pdfft?md5=63a9b00b8624f7892908de829beda053&pid=1-s2.0-S0301462224000462-main.pdf","citationCount":"0","resultStr":"{\"title\":\"H2 production under stress: [FeFe]‑hydrogenases reveal strong stability in high pressure environments\",\"authors\":\"Kristina Edenharter , Michel W. Jaworek , Vera Engelbrecht , Roland Winter , Thomas Happe\",\"doi\":\"10.1016/j.bpc.2024.107217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hydrogenases are a diverse group of metalloenzymes that catalyze the conversion of H<sub>2</sub> into protons and electrons and the reverse reaction. A subgroup is formed by the [FeFe]‑hydrogenases, which are the most efficient enzymes of microbes for catalytic H<sub>2</sub> conversion. We have determined the stability and activity of two [FeFe]‑hydrogenases under high temperature and pressure conditions employing FTIR spectroscopy and the high-pressure stopped-flow methodology in combination with fast UV/Vis detection. Our data show high temperature stability and an increase in activity up to the unfolding temperatures of the enzymes. Remarkably, both enzymes reveal a very high pressure stability of their structure, even up to pressures of several kbars. Their high pressure-stability enables high enzymatic activity up to 2 kbar, which largely exceeds the pressure limit encountered by organisms in the deep sea and sub-seafloor on Earth.</p></div>\",\"PeriodicalId\":8979,\"journal\":{\"name\":\"Biophysical chemistry\",\"volume\":\"308 \",\"pages\":\"Article 107217\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0301462224000462/pdfft?md5=63a9b00b8624f7892908de829beda053&pid=1-s2.0-S0301462224000462-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301462224000462\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301462224000462","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
H2 production under stress: [FeFe]‑hydrogenases reveal strong stability in high pressure environments
Hydrogenases are a diverse group of metalloenzymes that catalyze the conversion of H2 into protons and electrons and the reverse reaction. A subgroup is formed by the [FeFe]‑hydrogenases, which are the most efficient enzymes of microbes for catalytic H2 conversion. We have determined the stability and activity of two [FeFe]‑hydrogenases under high temperature and pressure conditions employing FTIR spectroscopy and the high-pressure stopped-flow methodology in combination with fast UV/Vis detection. Our data show high temperature stability and an increase in activity up to the unfolding temperatures of the enzymes. Remarkably, both enzymes reveal a very high pressure stability of their structure, even up to pressures of several kbars. Their high pressure-stability enables high enzymatic activity up to 2 kbar, which largely exceeds the pressure limit encountered by organisms in the deep sea and sub-seafloor on Earth.
期刊介绍:
Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal.