非心脏大手术中术中心肺变异性对术后肺部并发症的影响:回顾性队列研究

IF 3.5 3区 医学 Q1 HEALTH CARE SCIENCES & SERVICES Journal of Medical Systems Pub Date : 2024-03-15 DOI:10.1007/s10916-024-02050-6
Sylvia Ranjeva, Alexander Nagebretsky, Gabriel Odozynski, Ana Fernandez-Bustamante, Gyorgy Frendl, R Alok Gupta, Juraj Sprung, Bala Subramaniam, Ricardo Martinez Ruiz, Karsten Bartels, Jadelis Giquel, Jae-Woo Lee, Timothy Houle, Marcos Francisco Vidal Melo
{"title":"非心脏大手术中术中心肺变异性对术后肺部并发症的影响:回顾性队列研究","authors":"Sylvia Ranjeva, Alexander Nagebretsky, Gabriel Odozynski, Ana Fernandez-Bustamante, Gyorgy Frendl, R Alok Gupta, Juraj Sprung, Bala Subramaniam, Ricardo Martinez Ruiz, Karsten Bartels, Jadelis Giquel, Jae-Woo Lee, Timothy Houle, Marcos Francisco Vidal Melo","doi":"10.1007/s10916-024-02050-6","DOIUrl":null,"url":null,"abstract":"<p><p>Intraoperative cardiopulmonary variables are well-known predictors of postoperative pulmonary complications (PPC), traditionally quantified by median values over the duration of surgery. However, it is unknown whether cardiopulmonary instability, or wider intra-operative variability of the same metrics, is distinctly associated with PPC risk and severity. We leveraged a retrospective cohort of adults (n = 1202) undergoing major non-cardiothoracic surgery. We used multivariable logistic regression to evaluate the association of two outcomes (1)moderate-or-severe PPC and (2)any PPC with two sets of exposure variables- (a)variability of cardiopulmonary metrics (inter-quartile range, IQR) and (b)median intraoperative cardiopulmonary metrics. We compared predictive ability (receiver operating curve analysis, ROC) and parsimony (information criteria) of three models evaluating different aspects of the intra-operative cardiopulmonary metrics: Median-based: Median cardiopulmonary metrics alone, Variability-based: IQR of cardiopulmonary metrics alone, and Combined: Medians and IQR. Models controlled for peri-operative/surgical factors, demographics, and comorbidities. PPC occurred in 400(33%) of patients, and 91(8%) experienced moderate-or-severe PPC. Variability in multiple intra-operative cardiopulmonary metrics was independently associated with risk of moderate-or-severe, but not any, PPC. For moderate-or-severe PPC, the best-fit predictive model was the Variability-based model by both information criteria and ROC analysis (area under the curve, AUC<sub>Variability-based</sub> = 0.74 vs AUC<sub>Median-based</sub> = 0.65, p = 0.0015; AUC<sub>Variability-based</sub> = 0.74 vs AUC<sub>Combined</sub> = 0.68, p = 0.012). For any PPC, the Median-based model yielded the best fit by information criteria. Predictive accuracy was marginally but not significantly higher for the Combined model (AUC<sub>Combined</sub> = 0.661) than for the Median-based (AUC<sub>Median-based</sub> = 0.657, p = 0.60) or Variability-based (AUC<sub>Variability-based</sub> = 0.649, p = 0.29) models. Variability of cardiopulmonary metrics, distinct from median intra-operative values, is an important predictor of moderate-or-severe PPC.</p>","PeriodicalId":16338,"journal":{"name":"Journal of Medical Systems","volume":"48 1","pages":"31"},"PeriodicalIF":3.5000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575736/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of Intra-operative Cardiopulmonary Variability On Post-operative Pulmonary Complications in Major Non-cardiac Surgery: A Retrospective Cohort Study.\",\"authors\":\"Sylvia Ranjeva, Alexander Nagebretsky, Gabriel Odozynski, Ana Fernandez-Bustamante, Gyorgy Frendl, R Alok Gupta, Juraj Sprung, Bala Subramaniam, Ricardo Martinez Ruiz, Karsten Bartels, Jadelis Giquel, Jae-Woo Lee, Timothy Houle, Marcos Francisco Vidal Melo\",\"doi\":\"10.1007/s10916-024-02050-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intraoperative cardiopulmonary variables are well-known predictors of postoperative pulmonary complications (PPC), traditionally quantified by median values over the duration of surgery. However, it is unknown whether cardiopulmonary instability, or wider intra-operative variability of the same metrics, is distinctly associated with PPC risk and severity. We leveraged a retrospective cohort of adults (n = 1202) undergoing major non-cardiothoracic surgery. We used multivariable logistic regression to evaluate the association of two outcomes (1)moderate-or-severe PPC and (2)any PPC with two sets of exposure variables- (a)variability of cardiopulmonary metrics (inter-quartile range, IQR) and (b)median intraoperative cardiopulmonary metrics. We compared predictive ability (receiver operating curve analysis, ROC) and parsimony (information criteria) of three models evaluating different aspects of the intra-operative cardiopulmonary metrics: Median-based: Median cardiopulmonary metrics alone, Variability-based: IQR of cardiopulmonary metrics alone, and Combined: Medians and IQR. Models controlled for peri-operative/surgical factors, demographics, and comorbidities. PPC occurred in 400(33%) of patients, and 91(8%) experienced moderate-or-severe PPC. Variability in multiple intra-operative cardiopulmonary metrics was independently associated with risk of moderate-or-severe, but not any, PPC. For moderate-or-severe PPC, the best-fit predictive model was the Variability-based model by both information criteria and ROC analysis (area under the curve, AUC<sub>Variability-based</sub> = 0.74 vs AUC<sub>Median-based</sub> = 0.65, p = 0.0015; AUC<sub>Variability-based</sub> = 0.74 vs AUC<sub>Combined</sub> = 0.68, p = 0.012). For any PPC, the Median-based model yielded the best fit by information criteria. Predictive accuracy was marginally but not significantly higher for the Combined model (AUC<sub>Combined</sub> = 0.661) than for the Median-based (AUC<sub>Median-based</sub> = 0.657, p = 0.60) or Variability-based (AUC<sub>Variability-based</sub> = 0.649, p = 0.29) models. Variability of cardiopulmonary metrics, distinct from median intra-operative values, is an important predictor of moderate-or-severe PPC.</p>\",\"PeriodicalId\":16338,\"journal\":{\"name\":\"Journal of Medical Systems\",\"volume\":\"48 1\",\"pages\":\"31\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575736/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Systems\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10916-024-02050-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10916-024-02050-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

术中心肺变量是众所周知的术后肺部并发症(PPC)的预测因素,传统上以手术持续时间的中位值进行量化。然而,心肺功能不稳定或相同指标在术中更大范围的变化是否与肺部并发症的风险和严重程度明显相关,目前还不得而知。我们利用一个回顾性队列对接受非心胸大手术的成人(n = 1202)进行了分析。我们使用多变量逻辑回归评估了两种结果(1)中度或重度 PPC 和(2)任何 PPC 与两组暴露变量的相关性--(a) 心肺指标的变异性(四分位数间范围,IQR)和 (b) 术中心肺指标的中位数。我们比较了评估术中心肺指标不同方面的三种模型的预测能力(接收者操作曲线分析,ROC)和解析性(信息标准):基于中位数:基于中位数:仅评估心肺指标的中位数;基于变异性:评估心肺指标的 IQR:心肺指标的 IQR,以及组合:中位数和 IQR。模型控制了围手术期/手术因素、人口统计学和合并症。400(33%)名患者发生了 PPC,91(8%)名患者发生了中度或重度 PPC。术中多项心肺指标的变异与中度或重度 PPC 的风险独立相关,但与任何 PPC 无关。根据信息标准和 ROC 分析(曲线下面积,AUCVariability-based = 0.74 vs AUCMedian-based = 0.65,p = 0.0015;AUCVariability-based = 0.74 vs AUCCombined = 0.68,p = 0.012),对于中度或重度 PPC,最佳拟合预测模型是基于变异性的模型。对于任何 PPC,根据信息标准,基于中位数的模型拟合度最高。组合模型的预测准确度(AUCCombined = 0.661)略高于基于中位数的模型(AUCMedian-based = 0.657,p = 0.60)或基于变异性的模型(AUCVariability-based = 0.649,p = 0.29),但并无显著差异。有别于术中中值的心肺指标变异性是预测中度或重度 PPC 的重要指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of Intra-operative Cardiopulmonary Variability On Post-operative Pulmonary Complications in Major Non-cardiac Surgery: A Retrospective Cohort Study.

Intraoperative cardiopulmonary variables are well-known predictors of postoperative pulmonary complications (PPC), traditionally quantified by median values over the duration of surgery. However, it is unknown whether cardiopulmonary instability, or wider intra-operative variability of the same metrics, is distinctly associated with PPC risk and severity. We leveraged a retrospective cohort of adults (n = 1202) undergoing major non-cardiothoracic surgery. We used multivariable logistic regression to evaluate the association of two outcomes (1)moderate-or-severe PPC and (2)any PPC with two sets of exposure variables- (a)variability of cardiopulmonary metrics (inter-quartile range, IQR) and (b)median intraoperative cardiopulmonary metrics. We compared predictive ability (receiver operating curve analysis, ROC) and parsimony (information criteria) of three models evaluating different aspects of the intra-operative cardiopulmonary metrics: Median-based: Median cardiopulmonary metrics alone, Variability-based: IQR of cardiopulmonary metrics alone, and Combined: Medians and IQR. Models controlled for peri-operative/surgical factors, demographics, and comorbidities. PPC occurred in 400(33%) of patients, and 91(8%) experienced moderate-or-severe PPC. Variability in multiple intra-operative cardiopulmonary metrics was independently associated with risk of moderate-or-severe, but not any, PPC. For moderate-or-severe PPC, the best-fit predictive model was the Variability-based model by both information criteria and ROC analysis (area under the curve, AUCVariability-based = 0.74 vs AUCMedian-based = 0.65, p = 0.0015; AUCVariability-based = 0.74 vs AUCCombined = 0.68, p = 0.012). For any PPC, the Median-based model yielded the best fit by information criteria. Predictive accuracy was marginally but not significantly higher for the Combined model (AUCCombined = 0.661) than for the Median-based (AUCMedian-based = 0.657, p = 0.60) or Variability-based (AUCVariability-based = 0.649, p = 0.29) models. Variability of cardiopulmonary metrics, distinct from median intra-operative values, is an important predictor of moderate-or-severe PPC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medical Systems
Journal of Medical Systems 医学-卫生保健
CiteScore
11.60
自引率
1.90%
发文量
83
审稿时长
4.8 months
期刊介绍: Journal of Medical Systems provides a forum for the presentation and discussion of the increasingly extensive applications of new systems techniques and methods in hospital clinic and physician''s office administration; pathology radiology and pharmaceutical delivery systems; medical records storage and retrieval; and ancillary patient-support systems. The journal publishes informative articles essays and studies across the entire scale of medical systems from large hospital programs to novel small-scale medical services. Education is an integral part of this amalgamation of sciences and selected articles are published in this area. Since existing medical systems are constantly being modified to fit particular circumstances and to solve specific problems the journal includes a special section devoted to status reports on current installations.
期刊最新文献
Garbage In, Garbage Out? Negative Impact of Physiological Waveform Artifacts in a Hospital Clinical Data Warehouse. 21st Century Cures Act and Information Blocking: How Have Different Specialties Responded? Self-Supervised Learning for Near-Wild Cognitive Workload Estimation. Electronic Health Records Sharing Based on Consortium Blockchain. Large Language Models in Healthcare: An Urgent Call for Ongoing, Rigorous Validation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1