Yaotian Zhao, Xuhan Guo, Jinlong Xiang, Zhenyu Zhao, Yujia Zhang, Xi Xiao, Jia Liu, Daigao Chen, and Yikai Su
{"title":"基于双光子吸收的微型计算光谱仪","authors":"Yaotian Zhao, Xuhan Guo, Jinlong Xiang, Zhenyu Zhao, Yujia Zhang, Xi Xiao, Jia Liu, Daigao Chen, and Yikai Su","doi":"10.1364/optica.511658","DOIUrl":null,"url":null,"abstract":"On-chip spectrometers hold significant promise in the development of laboratory-on-a-chip applications. However, the spectrometers usually require extra on-chip or off-chip photodetectors (PDs) to sense optical signals, resulting in increased footprints and costs. In this paper, we address this issue by proposing a fully on-chip spectrometer based on two-photon absorption (TPA) in a simple micro-ring resonator (MRR) configuration. While TPA is a commonly undesired phenomenon in conventional silicon devices due to its attached absorption losses and nonlinearity, we exploit it as a powerful and efficient tool for encoding spectral information, instead of using additional PDs. The input spectrum can be reconstructed from the sensed TPA current. Our proposed spectrometer achieves a bandwidth of 10 nm with a resolution of 0.4 nm while occupying a small footprint of only <span><span>{16} \\times {16}\\;\\unicode{x00B5}{\\rm m}^2</span><script type=\"math/tex\">{16} \\times {16}\\;\\unicode{x00B5}{\\rm m}^2</script></span>, and the bandwidth can be further improved through several cascaded MRRs. This advancement could enable forward fully integrated and miniaturized spectrometers with low cost, which holds far-reaching applications in <i>in situ</i> biochemical analysis, remote sensing, and intelligent healthcare.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"23 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Miniaturized computational spectrometer based on two-photon absorption\",\"authors\":\"Yaotian Zhao, Xuhan Guo, Jinlong Xiang, Zhenyu Zhao, Yujia Zhang, Xi Xiao, Jia Liu, Daigao Chen, and Yikai Su\",\"doi\":\"10.1364/optica.511658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On-chip spectrometers hold significant promise in the development of laboratory-on-a-chip applications. However, the spectrometers usually require extra on-chip or off-chip photodetectors (PDs) to sense optical signals, resulting in increased footprints and costs. In this paper, we address this issue by proposing a fully on-chip spectrometer based on two-photon absorption (TPA) in a simple micro-ring resonator (MRR) configuration. While TPA is a commonly undesired phenomenon in conventional silicon devices due to its attached absorption losses and nonlinearity, we exploit it as a powerful and efficient tool for encoding spectral information, instead of using additional PDs. The input spectrum can be reconstructed from the sensed TPA current. Our proposed spectrometer achieves a bandwidth of 10 nm with a resolution of 0.4 nm while occupying a small footprint of only <span><span>{16} \\\\times {16}\\\\;\\\\unicode{x00B5}{\\\\rm m}^2</span><script type=\\\"math/tex\\\">{16} \\\\times {16}\\\\;\\\\unicode{x00B5}{\\\\rm m}^2</script></span>, and the bandwidth can be further improved through several cascaded MRRs. This advancement could enable forward fully integrated and miniaturized spectrometers with low cost, which holds far-reaching applications in <i>in situ</i> biochemical analysis, remote sensing, and intelligent healthcare.\",\"PeriodicalId\":19515,\"journal\":{\"name\":\"Optica\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optica\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/optica.511658\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/optica.511658","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Miniaturized computational spectrometer based on two-photon absorption
On-chip spectrometers hold significant promise in the development of laboratory-on-a-chip applications. However, the spectrometers usually require extra on-chip or off-chip photodetectors (PDs) to sense optical signals, resulting in increased footprints and costs. In this paper, we address this issue by proposing a fully on-chip spectrometer based on two-photon absorption (TPA) in a simple micro-ring resonator (MRR) configuration. While TPA is a commonly undesired phenomenon in conventional silicon devices due to its attached absorption losses and nonlinearity, we exploit it as a powerful and efficient tool for encoding spectral information, instead of using additional PDs. The input spectrum can be reconstructed from the sensed TPA current. Our proposed spectrometer achieves a bandwidth of 10 nm with a resolution of 0.4 nm while occupying a small footprint of only {16} \times {16}\;\unicode{x00B5}{\rm m}^2, and the bandwidth can be further improved through several cascaded MRRs. This advancement could enable forward fully integrated and miniaturized spectrometers with low cost, which holds far-reaching applications in in situ biochemical analysis, remote sensing, and intelligent healthcare.
期刊介绍:
Optica is an open access, online-only journal published monthly by Optica Publishing Group. It is dedicated to the rapid dissemination of high-impact peer-reviewed research in the field of optics and photonics. The journal provides a forum for theoretical or experimental, fundamental or applied research to be swiftly accessed by the international community. Optica is abstracted and indexed in Chemical Abstracts Service, Current Contents/Physical, Chemical & Earth Sciences, and Science Citation Index Expanded.