{"title":"用于治疗失眠症的新型双重奥曲肽 1/2受体拮抗剂 vornorexant/TS-142 的临床前代谢和处置。","authors":"Yoshihiro Konno, Shunsuke Kamigaso, Hidetoh Toki, Shuichi Terasaka, Hirohiko Hikichi, Hiromi Endo, Jun-Ichi Yamaguchi, Akiko Mizuno-Yasuhira","doi":"10.1002/prp2.1183","DOIUrl":null,"url":null,"abstract":"<p><p>We investigated the metabolism and disposition of vornorexant, a novel dual orexin receptor antagonist, in rats and dogs, and clarified in vitro metabolite profiles in humans. Furthermore, we investigated the pharmacokinetics of active metabolites in rats and dogs and their CNS distribution in rats to elucidate its contribution to drug efficacy. [<sup>14</sup> C]vornorexant was rapidly and mostly absorbed after the oral administration in rats and dogs. The drug-derived radioactivity, including metabolites, was distributed to major organs such as the liver, kidneys in rats, and was almost eliminated within 24 h post-dose in both species. Metabolite profiling revealed that main clearance mechanism of vornorexant was metabolism via multiple pathways by oxidation. The major circulating components were the cleaved metabolites (M10, M12) in rats, and the unchanged form in dogs, followed by M1, and then M3. Incubation with human hepatocytes resulted in formation of metabolites, including M1, M3, M10, and M12. The metabolic pathways were similar in all tested species. Resulting from the PK and CNS distribution of active metabolites (M1 and M3) with weaker pharmacological activity, the concentration of the unchanged form was higher than that of active metabolites in rat CSF and dog plasma, suggesting that the unchanged form mainly contributed to the drug efficacy. These findings demonstrate that vornorexant is absorbed immediately after administration, and vornorexant and its metabolites are rapidly and completely eliminated in rats and dogs. Thus, vornorexant may have favorable pharmacokinetic profiles as a hypnotic drug to provide rapid onset of action and minimal next-day residual effects in humans.</p>","PeriodicalId":19948,"journal":{"name":"Pharmacology Research & Perspectives","volume":"12 2","pages":"e1183"},"PeriodicalIF":2.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10943176/pdf/","citationCount":"0","resultStr":"{\"title\":\"Preclinical metabolism and the disposition of vornorexant/TS-142, a novel dual orexin 1/2 receptor antagonist for the treatment of insomnia.\",\"authors\":\"Yoshihiro Konno, Shunsuke Kamigaso, Hidetoh Toki, Shuichi Terasaka, Hirohiko Hikichi, Hiromi Endo, Jun-Ichi Yamaguchi, Akiko Mizuno-Yasuhira\",\"doi\":\"10.1002/prp2.1183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigated the metabolism and disposition of vornorexant, a novel dual orexin receptor antagonist, in rats and dogs, and clarified in vitro metabolite profiles in humans. Furthermore, we investigated the pharmacokinetics of active metabolites in rats and dogs and their CNS distribution in rats to elucidate its contribution to drug efficacy. [<sup>14</sup> C]vornorexant was rapidly and mostly absorbed after the oral administration in rats and dogs. The drug-derived radioactivity, including metabolites, was distributed to major organs such as the liver, kidneys in rats, and was almost eliminated within 24 h post-dose in both species. Metabolite profiling revealed that main clearance mechanism of vornorexant was metabolism via multiple pathways by oxidation. The major circulating components were the cleaved metabolites (M10, M12) in rats, and the unchanged form in dogs, followed by M1, and then M3. Incubation with human hepatocytes resulted in formation of metabolites, including M1, M3, M10, and M12. The metabolic pathways were similar in all tested species. Resulting from the PK and CNS distribution of active metabolites (M1 and M3) with weaker pharmacological activity, the concentration of the unchanged form was higher than that of active metabolites in rat CSF and dog plasma, suggesting that the unchanged form mainly contributed to the drug efficacy. These findings demonstrate that vornorexant is absorbed immediately after administration, and vornorexant and its metabolites are rapidly and completely eliminated in rats and dogs. Thus, vornorexant may have favorable pharmacokinetic profiles as a hypnotic drug to provide rapid onset of action and minimal next-day residual effects in humans.</p>\",\"PeriodicalId\":19948,\"journal\":{\"name\":\"Pharmacology Research & Perspectives\",\"volume\":\"12 2\",\"pages\":\"e1183\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10943176/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacology Research & Perspectives\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/prp2.1183\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacology Research & Perspectives","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/prp2.1183","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Preclinical metabolism and the disposition of vornorexant/TS-142, a novel dual orexin 1/2 receptor antagonist for the treatment of insomnia.
We investigated the metabolism and disposition of vornorexant, a novel dual orexin receptor antagonist, in rats and dogs, and clarified in vitro metabolite profiles in humans. Furthermore, we investigated the pharmacokinetics of active metabolites in rats and dogs and their CNS distribution in rats to elucidate its contribution to drug efficacy. [14 C]vornorexant was rapidly and mostly absorbed after the oral administration in rats and dogs. The drug-derived radioactivity, including metabolites, was distributed to major organs such as the liver, kidneys in rats, and was almost eliminated within 24 h post-dose in both species. Metabolite profiling revealed that main clearance mechanism of vornorexant was metabolism via multiple pathways by oxidation. The major circulating components were the cleaved metabolites (M10, M12) in rats, and the unchanged form in dogs, followed by M1, and then M3. Incubation with human hepatocytes resulted in formation of metabolites, including M1, M3, M10, and M12. The metabolic pathways were similar in all tested species. Resulting from the PK and CNS distribution of active metabolites (M1 and M3) with weaker pharmacological activity, the concentration of the unchanged form was higher than that of active metabolites in rat CSF and dog plasma, suggesting that the unchanged form mainly contributed to the drug efficacy. These findings demonstrate that vornorexant is absorbed immediately after administration, and vornorexant and its metabolites are rapidly and completely eliminated in rats and dogs. Thus, vornorexant may have favorable pharmacokinetic profiles as a hypnotic drug to provide rapid onset of action and minimal next-day residual effects in humans.
期刊介绍:
PR&P is jointly published by the American Society for Pharmacology and Experimental Therapeutics (ASPET), the British Pharmacological Society (BPS), and Wiley. PR&P is a bi-monthly open access journal that publishes a range of article types, including: target validation (preclinical papers that show a hypothesis is incorrect or papers on drugs that have failed in early clinical development); drug discovery reviews (strategy, hypotheses, and data resulting in a successful therapeutic drug); frontiers in translational medicine (drug and target validation for an unmet therapeutic need); pharmacological hypotheses (reviews that are oriented to inform a novel hypothesis); and replication studies (work that refutes key findings [failed replication] and work that validates key findings). PR&P publishes papers submitted directly to the journal and those referred from the journals of ASPET and the BPS