网络物理系统的网络复原力方法概览

IF 23.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS ACM Computing Surveys Pub Date : 2024-03-16 DOI:10.1145/3652953
Mariana Segovia-Ferreira, Jose Rubio-Hernan, Ana Rosa Cavalli, Joaquin Garcia-Alfaro
{"title":"网络物理系统的网络复原力方法概览","authors":"Mariana Segovia-Ferreira, Jose Rubio-Hernan, Ana Rosa Cavalli, Joaquin Garcia-Alfaro","doi":"10.1145/3652953","DOIUrl":null,"url":null,"abstract":"<p>Concerns for the resilience of Cyber-Physical Systems (CPS) in critical infrastructure are growing. CPS integrate sensing, computation, control, and networking into physical objects and mission-critical services, connecting traditional infrastructure to internet technologies. While this integration increases service efficiency, it has to face the possibility of new threats posed by the new functionalities. This leads to cyber-threats, such as denial-of-service, modification of data, information leakage, spreading of malware, and many others. Cyber-resilience refers to the ability of a CPS to prepare, absorb, recover, and adapt to the adverse effects associated with cyber-threats, e.g., physical degradation of the CPS performance resulting from a cyber-attack. Cyber-resilience aims at ensuring CPS survival, by keeping the core functionalities of the CPS in case of extreme events. The literature on cyber-resilience is rapidly increasing, leading to a broad variety of research works addressing this new topic. In this article, we create a systematization of knowledge about existing scientific efforts of making CPS cyber-resilient. We systematically survey recent literature addressing cyber-resilience with a focus on techniques that may be used on CPS. We first provide preliminaries and background on CPS and threats, and subsequently survey state-of-the-art approaches that have been proposed by recent research work applicable to CPS. In particular, we aim at differentiating research work from traditional risk management approaches, based on the general acceptance that it is unfeasible to prevent and mitigate all possible risks threatening a CPS. We also discuss questions and research challenges, with a focus on the practical aspects of cyber-resilience, such as the use of metrics and evaluation methods, as well as testing and validation environments.</p>","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":null,"pages":null},"PeriodicalIF":23.8000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Survey on Cyber-Resilience Approaches for Cyber-Physical Systems\",\"authors\":\"Mariana Segovia-Ferreira, Jose Rubio-Hernan, Ana Rosa Cavalli, Joaquin Garcia-Alfaro\",\"doi\":\"10.1145/3652953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Concerns for the resilience of Cyber-Physical Systems (CPS) in critical infrastructure are growing. CPS integrate sensing, computation, control, and networking into physical objects and mission-critical services, connecting traditional infrastructure to internet technologies. While this integration increases service efficiency, it has to face the possibility of new threats posed by the new functionalities. This leads to cyber-threats, such as denial-of-service, modification of data, information leakage, spreading of malware, and many others. Cyber-resilience refers to the ability of a CPS to prepare, absorb, recover, and adapt to the adverse effects associated with cyber-threats, e.g., physical degradation of the CPS performance resulting from a cyber-attack. Cyber-resilience aims at ensuring CPS survival, by keeping the core functionalities of the CPS in case of extreme events. The literature on cyber-resilience is rapidly increasing, leading to a broad variety of research works addressing this new topic. In this article, we create a systematization of knowledge about existing scientific efforts of making CPS cyber-resilient. We systematically survey recent literature addressing cyber-resilience with a focus on techniques that may be used on CPS. We first provide preliminaries and background on CPS and threats, and subsequently survey state-of-the-art approaches that have been proposed by recent research work applicable to CPS. In particular, we aim at differentiating research work from traditional risk management approaches, based on the general acceptance that it is unfeasible to prevent and mitigate all possible risks threatening a CPS. We also discuss questions and research challenges, with a focus on the practical aspects of cyber-resilience, such as the use of metrics and evaluation methods, as well as testing and validation environments.</p>\",\"PeriodicalId\":50926,\"journal\":{\"name\":\"ACM Computing Surveys\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":23.8000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Computing Surveys\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3652953\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3652953","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

人们越来越关注关键基础设施中网络物理系统(CPS)的恢复能力。网络物理系统将传感、计算、控制和网络整合到物理对象和关键任务服务中,将传统基础设施与互联网技术连接起来。这种整合在提高服务效率的同时,也必须面对新功能可能带来的新威胁。这就导致了网络威胁,如拒绝服务、修改数据、信息泄露、恶意软件传播等。网络复原力是指 CPS 准备、吸收、恢复和适应与网络威胁相关的不利影响的能力,如网络攻击导致的 CPS 性能物理下降。网络复原力旨在确保 CPS 的生存,在极端事件发生时保持 CPS 的核心功能。有关网络复原力的文献正在迅速增加,导致针对这一新课题的研究工作种类繁多。在本文中,我们将对现有的使 CPS 具有网络复原力的科学工作进行系统化的知识梳理。我们系统地调查了近期有关网络复原力的文献,重点关注可用于 CPS 的技术。我们首先介绍了 CPS 和威胁的前言和背景,随后调查了近期研究工作提出的适用于 CPS 的最新方法。特别是,我们的目标是将研究工作与传统的风险管理方法区分开来,因为人们普遍认为,要预防和减轻威胁 CPS 的所有可能风险是不可行的。我们还讨论了问题和研究挑战,重点是网络复原力的实际方面,如指标和评估方法的使用,以及测试和验证环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Survey on Cyber-Resilience Approaches for Cyber-Physical Systems

Concerns for the resilience of Cyber-Physical Systems (CPS) in critical infrastructure are growing. CPS integrate sensing, computation, control, and networking into physical objects and mission-critical services, connecting traditional infrastructure to internet technologies. While this integration increases service efficiency, it has to face the possibility of new threats posed by the new functionalities. This leads to cyber-threats, such as denial-of-service, modification of data, information leakage, spreading of malware, and many others. Cyber-resilience refers to the ability of a CPS to prepare, absorb, recover, and adapt to the adverse effects associated with cyber-threats, e.g., physical degradation of the CPS performance resulting from a cyber-attack. Cyber-resilience aims at ensuring CPS survival, by keeping the core functionalities of the CPS in case of extreme events. The literature on cyber-resilience is rapidly increasing, leading to a broad variety of research works addressing this new topic. In this article, we create a systematization of knowledge about existing scientific efforts of making CPS cyber-resilient. We systematically survey recent literature addressing cyber-resilience with a focus on techniques that may be used on CPS. We first provide preliminaries and background on CPS and threats, and subsequently survey state-of-the-art approaches that have been proposed by recent research work applicable to CPS. In particular, we aim at differentiating research work from traditional risk management approaches, based on the general acceptance that it is unfeasible to prevent and mitigate all possible risks threatening a CPS. We also discuss questions and research challenges, with a focus on the practical aspects of cyber-resilience, such as the use of metrics and evaluation methods, as well as testing and validation environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Computing Surveys
ACM Computing Surveys 工程技术-计算机:理论方法
CiteScore
33.20
自引率
0.60%
发文量
372
审稿时长
12 months
期刊介绍: ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods. ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.
期刊最新文献
How to Improve Video Analytics with Action Recognition: A Survey When Federated Learning Meets Privacy-Preserving Computation A review and benchmark of feature importance methods for neural networks Enabling Technologies and Techniques for Floor Identification A Comprehensive Analysis of Explainable AI for Malware Hunting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1