生态学中的复杂系统:大型 Lotka-Volterra 模型和随机矩阵导览

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences Pub Date : 2024-03-06 DOI:10.1098/rspa.2023.0284
Imane Akjouj, Matthieu Barbier, Maxime Clenet, Walid Hachem, Mylène Maïda, François Massol, Jamal Najim, Viet Chi Tran
{"title":"生态学中的复杂系统:大型 Lotka-Volterra 模型和随机矩阵导览","authors":"Imane Akjouj, Matthieu Barbier, Maxime Clenet, Walid Hachem, Mylène Maïda, François Massol, Jamal Najim, Viet Chi Tran","doi":"10.1098/rspa.2023.0284","DOIUrl":null,"url":null,"abstract":"<p>Ecosystems represent archetypal complex dynamical systems, often modelled by coupled differential equations of the form\n<span><math display=\"block\"><mfrac><mrow><mrow><mi mathvariant=\"normal\">d</mi></mrow><msub><mi>x</mi><mi>i</mi></msub></mrow><mrow><mrow><mi mathvariant=\"normal\">d</mi></mrow><mi>t</mi></mrow></mfrac><mo>=</mo><msub><mi>x</mi><mi>i</mi></msub><msub><mi>ϕ</mi><mi>i</mi></msub><mo stretchy=\"false\">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>x</mi><mi>N</mi></msub><mo stretchy=\"false\">)</mo><mo>,</mo></math></span><span></span>where <span><math><mi>N</mi></math></span><span></span> represents the number of species and <span><math><msub><mi>x</mi><mi>i</mi></msub></math></span><span></span>, the abundance of species <span><math><mi>i</mi></math></span><span></span>. Among these families of coupled differential equations, Lotka–Volterra (LV) equations, corresponding to\n<span><math display=\"block\"><msub><mi>ϕ</mi><mi>i</mi></msub><mo stretchy=\"false\">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>x</mi><mi>N</mi></msub><mo stretchy=\"false\">)</mo><mo>=</mo><msub><mi>r</mi><mi>i</mi></msub><mo>−</mo><msub><mi>x</mi><mi>i</mi></msub><mo>+</mo><msub><mrow><mo stretchy=\"false\">(</mo><mi>Γ</mi><mrow><mtext mathvariant=\"bold\">x</mtext></mrow><mo stretchy=\"false\">)</mo></mrow><mi>i</mi></msub><mo>,</mo></math></span><span></span>play a privileged role, as the LV model represents an acceptable trade-off between complexity and tractability. Here, <span><math><msub><mi>r</mi><mi>i</mi></msub></math></span><span></span> is the intrinsic growth of species <span><math><mi>i</mi></math></span><span></span> and <span><math><mi>Γ</mi></math></span><span></span> stands for the interaction matrix: <span><math><msub><mi>Γ</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub></math></span><span></span> represents the effect of species <span><math><mi>j</mi></math></span><span></span> over species <span><math><mi>i</mi></math></span><span></span>. For large <span><math><mi>N</mi></math></span><span></span>, estimating matrix <span><math><mi>Γ</mi></math></span><span></span> is often an overwhelming task and an alternative is to draw <span><math><mi>Γ</mi></math></span><span></span> at random, parameterizing its statistical distribution by a limited number of model features. Dealing with large random matrices, we naturally rely on random matrix theory (RMT). The aim of this review article is to present an overview of the work at the junction of theoretical ecology and large RMT. It is intended to an interdisciplinary audience spanning theoretical ecology, complex systems, statistical physics and mathematical biology.</p>","PeriodicalId":20716,"journal":{"name":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"56 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complex systems in ecology: a guided tour with large Lotka–Volterra models and random matrices\",\"authors\":\"Imane Akjouj, Matthieu Barbier, Maxime Clenet, Walid Hachem, Mylène Maïda, François Massol, Jamal Najim, Viet Chi Tran\",\"doi\":\"10.1098/rspa.2023.0284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ecosystems represent archetypal complex dynamical systems, often modelled by coupled differential equations of the form\\n<span><math display=\\\"block\\\"><mfrac><mrow><mrow><mi mathvariant=\\\"normal\\\">d</mi></mrow><msub><mi>x</mi><mi>i</mi></msub></mrow><mrow><mrow><mi mathvariant=\\\"normal\\\">d</mi></mrow><mi>t</mi></mrow></mfrac><mo>=</mo><msub><mi>x</mi><mi>i</mi></msub><msub><mi>ϕ</mi><mi>i</mi></msub><mo stretchy=\\\"false\\\">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>x</mi><mi>N</mi></msub><mo stretchy=\\\"false\\\">)</mo><mo>,</mo></math></span><span></span>where <span><math><mi>N</mi></math></span><span></span> represents the number of species and <span><math><msub><mi>x</mi><mi>i</mi></msub></math></span><span></span>, the abundance of species <span><math><mi>i</mi></math></span><span></span>. Among these families of coupled differential equations, Lotka–Volterra (LV) equations, corresponding to\\n<span><math display=\\\"block\\\"><msub><mi>ϕ</mi><mi>i</mi></msub><mo stretchy=\\\"false\\\">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>x</mi><mi>N</mi></msub><mo stretchy=\\\"false\\\">)</mo><mo>=</mo><msub><mi>r</mi><mi>i</mi></msub><mo>−</mo><msub><mi>x</mi><mi>i</mi></msub><mo>+</mo><msub><mrow><mo stretchy=\\\"false\\\">(</mo><mi>Γ</mi><mrow><mtext mathvariant=\\\"bold\\\">x</mtext></mrow><mo stretchy=\\\"false\\\">)</mo></mrow><mi>i</mi></msub><mo>,</mo></math></span><span></span>play a privileged role, as the LV model represents an acceptable trade-off between complexity and tractability. Here, <span><math><msub><mi>r</mi><mi>i</mi></msub></math></span><span></span> is the intrinsic growth of species <span><math><mi>i</mi></math></span><span></span> and <span><math><mi>Γ</mi></math></span><span></span> stands for the interaction matrix: <span><math><msub><mi>Γ</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub></math></span><span></span> represents the effect of species <span><math><mi>j</mi></math></span><span></span> over species <span><math><mi>i</mi></math></span><span></span>. For large <span><math><mi>N</mi></math></span><span></span>, estimating matrix <span><math><mi>Γ</mi></math></span><span></span> is often an overwhelming task and an alternative is to draw <span><math><mi>Γ</mi></math></span><span></span> at random, parameterizing its statistical distribution by a limited number of model features. Dealing with large random matrices, we naturally rely on random matrix theory (RMT). The aim of this review article is to present an overview of the work at the junction of theoretical ecology and large RMT. It is intended to an interdisciplinary audience spanning theoretical ecology, complex systems, statistical physics and mathematical biology.</p>\",\"PeriodicalId\":20716,\"journal\":{\"name\":\"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rspa.2023.0284\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rspa.2023.0284","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

生态系统是典型的复杂动力系统,通常由形式为dxidt=xiji(x1,...,xN)的耦合微分方程模拟,其中 N 代表物种数量,xi 代表物种 i 的丰度。在这些耦合微分方程族中,Lotka-Volterra(LV)方程(对应于 ji(x1,...,xN)=ri-xi+(Γx)i)发挥着重要作用,因为 LV 模型在复杂性和可操作性之间进行了可接受的权衡。这里,ri 是物种 i 的内在增长,Γ 代表相互作用矩阵:Γij表示物种 j 对物种 i 的影响。对于大 N,估计矩阵Γ往往是一项艰巨的任务,另一种方法是随机绘制Γ,通过有限的模型特征参数化其统计分布。处理大型随机矩阵时,我们自然要依赖随机矩阵理论(RMT)。这篇综述文章旨在概述理论生态学与大型随机矩阵理论交界处的工作。文章面向跨学科读者,涵盖理论生态学、复杂系统、统计物理学和数学生物学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Complex systems in ecology: a guided tour with large Lotka–Volterra models and random matrices

Ecosystems represent archetypal complex dynamical systems, often modelled by coupled differential equations of the form dxidt=xiϕi(x1,,xN),where N represents the number of species and xi, the abundance of species i. Among these families of coupled differential equations, Lotka–Volterra (LV) equations, corresponding to ϕi(x1,,xN)=rixi+(Γx)i,play a privileged role, as the LV model represents an acceptable trade-off between complexity and tractability. Here, ri is the intrinsic growth of species i and Γ stands for the interaction matrix: Γij represents the effect of species j over species i. For large N, estimating matrix Γ is often an overwhelming task and an alternative is to draw Γ at random, parameterizing its statistical distribution by a limited number of model features. Dealing with large random matrices, we naturally rely on random matrix theory (RMT). The aim of this review article is to present an overview of the work at the junction of theoretical ecology and large RMT. It is intended to an interdisciplinary audience spanning theoretical ecology, complex systems, statistical physics and mathematical biology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
227
审稿时长
3.0 months
期刊介绍: Proceedings A has an illustrious history of publishing pioneering and influential research articles across the entire range of the physical and mathematical sciences. These have included Maxwell"s electromagnetic theory, the Braggs" first account of X-ray crystallography, Dirac"s relativistic theory of the electron, and Watson and Crick"s detailed description of the structure of DNA.
期刊最新文献
In silico modelling of mechanical response of breast cancer cell to interstitial fluid flow Quasi-static responses of marine mussel plaques detached from deformable wet substrates under directional tensions A mathematical model of the Bray–Liebhafsky reaction A tensor density measure of topological charge in three-dimensional nematic phases Isospectral open cavities and gratings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1