Xiangfei Meng, Lina Zhang, Xin Tian, Hongqing Chu, Yao Wang, Qingxin Shi
{"title":"利用条件生成对抗网络评估多区域电力系统的可用转移能力","authors":"Xiangfei Meng, Lina Zhang, Xin Tian, Hongqing Chu, Yao Wang, Qingxin Shi","doi":"10.1155/2024/5225784","DOIUrl":null,"url":null,"abstract":"<p>Available transfer capability (ATC) is an important measurement index to evaluate the security margin of interconnected power grids and serve as a reference for the transmission right transaction. In modern power systems, ATC is affected by the transmission network topology, renewable power output uncertainty, and load demand uncertainty. Traditional works usually model the power source-load uncertainty by using robust optimization, interval optimization, or chance-constraint optimization, which cannot fully reflect the probabilistic distribution of the daily source-load uncertainty. This paper proposes an ATC assessment methodology based on the typical stochastic scenarios of renewable output and load demand of multiarea power systems. Furthermore, the conditional generative adversarial network (CGAN) algorithm is adopted to generate and select representative scenario sets based on historical raw data, which can fully reflect the usual operating condition of a system with high renewable energy penetration. The scenario set that is fed into the ATC assessment model can fully characterize the impact of source-load uncertainty on daily ATC. Finally, the proposed method is verified by a modified three-area IEEE 9-bus system and a real-world provincial power system.</p>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Available Transfer Capability Assessment of Multiarea Power Systems with Conditional Generative Adversarial Network\",\"authors\":\"Xiangfei Meng, Lina Zhang, Xin Tian, Hongqing Chu, Yao Wang, Qingxin Shi\",\"doi\":\"10.1155/2024/5225784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Available transfer capability (ATC) is an important measurement index to evaluate the security margin of interconnected power grids and serve as a reference for the transmission right transaction. In modern power systems, ATC is affected by the transmission network topology, renewable power output uncertainty, and load demand uncertainty. Traditional works usually model the power source-load uncertainty by using robust optimization, interval optimization, or chance-constraint optimization, which cannot fully reflect the probabilistic distribution of the daily source-load uncertainty. This paper proposes an ATC assessment methodology based on the typical stochastic scenarios of renewable output and load demand of multiarea power systems. Furthermore, the conditional generative adversarial network (CGAN) algorithm is adopted to generate and select representative scenario sets based on historical raw data, which can fully reflect the usual operating condition of a system with high renewable energy penetration. The scenario set that is fed into the ATC assessment model can fully characterize the impact of source-load uncertainty on daily ATC. Finally, the proposed method is verified by a modified three-area IEEE 9-bus system and a real-world provincial power system.</p>\",\"PeriodicalId\":51293,\"journal\":{\"name\":\"International Transactions on Electrical Energy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Transactions on Electrical Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/5225784\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Transactions on Electrical Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/5225784","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Available Transfer Capability Assessment of Multiarea Power Systems with Conditional Generative Adversarial Network
Available transfer capability (ATC) is an important measurement index to evaluate the security margin of interconnected power grids and serve as a reference for the transmission right transaction. In modern power systems, ATC is affected by the transmission network topology, renewable power output uncertainty, and load demand uncertainty. Traditional works usually model the power source-load uncertainty by using robust optimization, interval optimization, or chance-constraint optimization, which cannot fully reflect the probabilistic distribution of the daily source-load uncertainty. This paper proposes an ATC assessment methodology based on the typical stochastic scenarios of renewable output and load demand of multiarea power systems. Furthermore, the conditional generative adversarial network (CGAN) algorithm is adopted to generate and select representative scenario sets based on historical raw data, which can fully reflect the usual operating condition of a system with high renewable energy penetration. The scenario set that is fed into the ATC assessment model can fully characterize the impact of source-load uncertainty on daily ATC. Finally, the proposed method is verified by a modified three-area IEEE 9-bus system and a real-world provincial power system.
期刊介绍:
International Transactions on Electrical Energy Systems publishes original research results on key advances in the generation, transmission, and distribution of electrical energy systems. Of particular interest are submissions concerning the modeling, analysis, optimization and control of advanced electric power systems.
Manuscripts on topics of economics, finance, policies, insulation materials, low-voltage power electronics, plasmas, and magnetics will generally not be considered for review.