Meshal Alfarhood, Rakan Alotaibi, Bassam Abdulrahim, Ahmad Einieh, Mohammed Almousa, Abdulrhman Alkhanifer
{"title":"利用机器学习预测航班延误:沙特阿拉伯航空公司案例研究","authors":"Meshal Alfarhood, Rakan Alotaibi, Bassam Abdulrahim, Ahmad Einieh, Mohammed Almousa, Abdulrhman Alkhanifer","doi":"10.1155/2024/3385463","DOIUrl":null,"url":null,"abstract":"Flight delays are a major concern for both travelers and airlines, with significant financial and reputational consequences. Accurately predicting flight delays is crucial for enhancing customer satisfaction and airline revenues. In this paper, we leverage the power of artificial intelligence and machine learning techniques to build a framework for accurately predicting flight delays. To achieve this, we collected flight information from September 2017 to April 2023, along with weather data, and performed extensive feature engineering to extract informative features to train our model. We conduct a comparative analysis of various popular machine learning architectures with distinctive characteristics, aiming to determine their efficacy in achieving optimal accuracy on our newly proposed dataset. Based on our evaluation of various architectures, our findings demonstrate that CatBoost outperformed the others by achieving the highest test accuracy and the lowest error rate in the challenging use case of Saudi Arabia. Moreover, to simulate real-world scenarios, our framework evaluates the best-performing model that has been selected for deployment in a web application, which provides users with the ability to accurately forecast flight delays and offers a user-friendly dashboard with valuable insights and analysis capabilities.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":"80 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Flight Delays with Machine Learning: A Case Study from Saudi Arabian Airlines\",\"authors\":\"Meshal Alfarhood, Rakan Alotaibi, Bassam Abdulrahim, Ahmad Einieh, Mohammed Almousa, Abdulrhman Alkhanifer\",\"doi\":\"10.1155/2024/3385463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flight delays are a major concern for both travelers and airlines, with significant financial and reputational consequences. Accurately predicting flight delays is crucial for enhancing customer satisfaction and airline revenues. In this paper, we leverage the power of artificial intelligence and machine learning techniques to build a framework for accurately predicting flight delays. To achieve this, we collected flight information from September 2017 to April 2023, along with weather data, and performed extensive feature engineering to extract informative features to train our model. We conduct a comparative analysis of various popular machine learning architectures with distinctive characteristics, aiming to determine their efficacy in achieving optimal accuracy on our newly proposed dataset. Based on our evaluation of various architectures, our findings demonstrate that CatBoost outperformed the others by achieving the highest test accuracy and the lowest error rate in the challenging use case of Saudi Arabia. Moreover, to simulate real-world scenarios, our framework evaluates the best-performing model that has been selected for deployment in a web application, which provides users with the ability to accurately forecast flight delays and offers a user-friendly dashboard with valuable insights and analysis capabilities.\",\"PeriodicalId\":13748,\"journal\":{\"name\":\"International Journal of Aerospace Engineering\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Aerospace Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/3385463\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/3385463","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Predicting Flight Delays with Machine Learning: A Case Study from Saudi Arabian Airlines
Flight delays are a major concern for both travelers and airlines, with significant financial and reputational consequences. Accurately predicting flight delays is crucial for enhancing customer satisfaction and airline revenues. In this paper, we leverage the power of artificial intelligence and machine learning techniques to build a framework for accurately predicting flight delays. To achieve this, we collected flight information from September 2017 to April 2023, along with weather data, and performed extensive feature engineering to extract informative features to train our model. We conduct a comparative analysis of various popular machine learning architectures with distinctive characteristics, aiming to determine their efficacy in achieving optimal accuracy on our newly proposed dataset. Based on our evaluation of various architectures, our findings demonstrate that CatBoost outperformed the others by achieving the highest test accuracy and the lowest error rate in the challenging use case of Saudi Arabia. Moreover, to simulate real-world scenarios, our framework evaluates the best-performing model that has been selected for deployment in a web application, which provides users with the ability to accurately forecast flight delays and offers a user-friendly dashboard with valuable insights and analysis capabilities.
期刊介绍:
International Journal of Aerospace Engineering aims to serve the international aerospace engineering community through dissemination of scientific knowledge on practical engineering and design methodologies pertaining to aircraft and space vehicles.
Original unpublished manuscripts are solicited on all areas of aerospace engineering including but not limited to:
-Mechanics of materials and structures-
Aerodynamics and fluid mechanics-
Dynamics and control-
Aeroacoustics-
Aeroelasticity-
Propulsion and combustion-
Avionics and systems-
Flight simulation and mechanics-
Unmanned air vehicles (UAVs).
Review articles on any of the above topics are also welcome.