Chuong Anthony Tran, Francisco James Leòn Trujillo, Antonello Salvatori, Margherita Solci, Andrea Causin, Luca Placidi, Emilio Barchiesi
{"title":"用于砌体分析的半变量可破坏弹塑性顶点弹簧模型","authors":"Chuong Anthony Tran, Francisco James Leòn Trujillo, Antonello Salvatori, Margherita Solci, Andrea Causin, Luca Placidi, Emilio Barchiesi","doi":"10.1177/10812865241233008","DOIUrl":null,"url":null,"abstract":"This work is an intermediate step towards the extension of a recently proposed block-based model for masonry structures, which was based on a hemivariational approach and inspired from granular micromechanics. Here, contrarily to the previous model, plastic effects will also be taken into account along with damage and elastic behaviours, and the full hemivariational derivation of the strong-form (in)equations will be detailed for the case of a lone vertex spring. The resulting model and methods shall then be used in future works to enrich the behaviours modelled by the previously mentioned masonry model.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"5 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hemivariational damageable elastoplastic vertex-spring model for masonry analysis\",\"authors\":\"Chuong Anthony Tran, Francisco James Leòn Trujillo, Antonello Salvatori, Margherita Solci, Andrea Causin, Luca Placidi, Emilio Barchiesi\",\"doi\":\"10.1177/10812865241233008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is an intermediate step towards the extension of a recently proposed block-based model for masonry structures, which was based on a hemivariational approach and inspired from granular micromechanics. Here, contrarily to the previous model, plastic effects will also be taken into account along with damage and elastic behaviours, and the full hemivariational derivation of the strong-form (in)equations will be detailed for the case of a lone vertex spring. The resulting model and methods shall then be used in future works to enrich the behaviours modelled by the previously mentioned masonry model.\",\"PeriodicalId\":49854,\"journal\":{\"name\":\"Mathematics and Mechanics of Solids\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Mechanics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/10812865241233008\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10812865241233008","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A hemivariational damageable elastoplastic vertex-spring model for masonry analysis
This work is an intermediate step towards the extension of a recently proposed block-based model for masonry structures, which was based on a hemivariational approach and inspired from granular micromechanics. Here, contrarily to the previous model, plastic effects will also be taken into account along with damage and elastic behaviours, and the full hemivariational derivation of the strong-form (in)equations will be detailed for the case of a lone vertex spring. The resulting model and methods shall then be used in future works to enrich the behaviours modelled by the previously mentioned masonry model.
期刊介绍:
Mathematics and Mechanics of Solids is an international peer-reviewed journal that publishes the highest quality original innovative research in solid mechanics and materials science.
The central aim of MMS is to publish original, well-written and self-contained research that elucidates the mechanical behaviour of solids with particular emphasis on mathematical principles. This journal is a member of the Committee on Publication Ethics (COPE).