测定三层材料弹性模量、硬度和膜厚的压痕法

IF 2.9 3区 工程技术 Q2 MECHANICS International Journal of Applied Mechanics Pub Date : 2024-03-14 DOI:10.1142/s1758825124500467
Siwei Zhao, Yuanxin Li, Jianwei Zhang, Bingbing Wang, Minghao Zhao, Chunsheng Lu
{"title":"测定三层材料弹性模量、硬度和膜厚的压痕法","authors":"Siwei Zhao, Yuanxin Li, Jianwei Zhang, Bingbing Wang, Minghao Zhao, Chunsheng Lu","doi":"10.1142/s1758825124500467","DOIUrl":null,"url":null,"abstract":"<p>Multilayer materials have found extensive application within the aerospace industry due to their notable mechanical attributes. The operational longevity and dependability of such materials are substantially influenced by the performance characteristics of individual layers. In this study, an indentation method was established for employing a weighting function to simultaneously characterize the elastic modulus, hardness and film thickness of tri-layer materials. The results of numerical simulations indicate that incorporating the substrate effect in such an approach allows for precise assessment of the mechanical properties of tri-layer materials with diverse thicknesses. To validate the method, nanoindentation tests were performed using two tri-layer materials (i.e., Al/Cu/304SS and Cu/Al/304SS). Further, according to numerical and experimental data, the proposed model could be reduced to evaluate the mechanical properties of a bilayer material. The present findings demonstrate the effectiveness and applicability of the proposed indentation method in characterizing multilayer materials, facilitating reliable assessment in practical applications.</p>","PeriodicalId":49186,"journal":{"name":"International Journal of Applied Mechanics","volume":"100 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Indentation Method for Determining the Elastic Modulus, Hardness and Film Thickness of a Tri-Layer Materials\",\"authors\":\"Siwei Zhao, Yuanxin Li, Jianwei Zhang, Bingbing Wang, Minghao Zhao, Chunsheng Lu\",\"doi\":\"10.1142/s1758825124500467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multilayer materials have found extensive application within the aerospace industry due to their notable mechanical attributes. The operational longevity and dependability of such materials are substantially influenced by the performance characteristics of individual layers. In this study, an indentation method was established for employing a weighting function to simultaneously characterize the elastic modulus, hardness and film thickness of tri-layer materials. The results of numerical simulations indicate that incorporating the substrate effect in such an approach allows for precise assessment of the mechanical properties of tri-layer materials with diverse thicknesses. To validate the method, nanoindentation tests were performed using two tri-layer materials (i.e., Al/Cu/304SS and Cu/Al/304SS). Further, according to numerical and experimental data, the proposed model could be reduced to evaluate the mechanical properties of a bilayer material. The present findings demonstrate the effectiveness and applicability of the proposed indentation method in characterizing multilayer materials, facilitating reliable assessment in practical applications.</p>\",\"PeriodicalId\":49186,\"journal\":{\"name\":\"International Journal of Applied Mechanics\",\"volume\":\"100 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1142/s1758825124500467\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1142/s1758825124500467","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

多层材料因其显著的机械属性而在航空航天工业中得到广泛应用。这些材料的运行寿命和可靠性在很大程度上受到单层材料性能特征的影响。本研究建立了一种压痕方法,采用加权函数同时表征三层材料的弹性模量、硬度和薄膜厚度。数值模拟的结果表明,将基底效应纳入这种方法可以精确评估不同厚度的三层材料的机械性能。为了验证该方法,使用两种三层材料(即铝/铜/304SS 和铜/铝/304SS)进行了纳米压痕测试。此外,根据数值和实验数据,提出的模型可以简化为评估双层材料的机械性能。本研究结果证明了所提出的压痕方法在表征多层材料方面的有效性和适用性,有助于在实际应用中进行可靠的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Indentation Method for Determining the Elastic Modulus, Hardness and Film Thickness of a Tri-Layer Materials

Multilayer materials have found extensive application within the aerospace industry due to their notable mechanical attributes. The operational longevity and dependability of such materials are substantially influenced by the performance characteristics of individual layers. In this study, an indentation method was established for employing a weighting function to simultaneously characterize the elastic modulus, hardness and film thickness of tri-layer materials. The results of numerical simulations indicate that incorporating the substrate effect in such an approach allows for precise assessment of the mechanical properties of tri-layer materials with diverse thicknesses. To validate the method, nanoindentation tests were performed using two tri-layer materials (i.e., Al/Cu/304SS and Cu/Al/304SS). Further, according to numerical and experimental data, the proposed model could be reduced to evaluate the mechanical properties of a bilayer material. The present findings demonstrate the effectiveness and applicability of the proposed indentation method in characterizing multilayer materials, facilitating reliable assessment in practical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
11.40%
发文量
116
审稿时长
3 months
期刊介绍: The journal has as its objective the publication and wide electronic dissemination of innovative and consequential research in applied mechanics. IJAM welcomes high-quality original research papers in all aspects of applied mechanics from contributors throughout the world. The journal aims to promote the international exchange of new knowledge and recent development information in all aspects of applied mechanics. In addition to covering the classical branches of applied mechanics, namely solid mechanics, fluid mechanics, thermodynamics, and material science, the journal also encourages contributions from newly emerging areas such as biomechanics, electromechanics, the mechanical behavior of advanced materials, nanomechanics, and many other inter-disciplinary research areas in which the concepts of applied mechanics are extensively applied and developed.
期刊最新文献
Deep Learning Accelerated Design of Bézier Curve-Based Cellular Metamaterials with Target Properties A Multi-Time-Step Parallel Computing Method based on Overlapping Particles for DEM A Frictionless Normal Contact Model for Flattening Elastoplastic Single Asperity Considering Yield Plateau and Strain Hardening Application of Convolutional Networks for Localization and Prediction of Scalar Parameters of Fractured Geological Inclusion An Indentation Method for Determining the Elastic Modulus, Hardness and Film Thickness of a Tri-Layer Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1