用 "平均法 "改进异质时间序列的预测,并应用于粮食需求预测

IF 6.9 2区 经济学 Q1 ECONOMICS International Journal of Forecasting Pub Date : 2024-03-14 DOI:10.1016/j.ijforecast.2024.02.002
{"title":"用 \"平均法 \"改进异质时间序列的预测,并应用于粮食需求预测","authors":"","doi":"10.1016/j.ijforecast.2024.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>A common forecasting setting in real-world applications considers a set of possibly heterogeneous time series of the same domain. Due to the different properties of each time series, such as length, obtaining forecasts for each individual time series in a straightforward way is challenging. This paper proposes a general framework utilizing a similarity measure in dynamic time warping to find similar time series to build neighborhoods in a <span><math><mi>k</mi></math></span>-nearest neighbor fashion and improve forecasts of possibly simple models by averaging. Several ways of performing the averaging are suggested, and theoretical arguments underline the usefulness of averaging for forecasting. Additionally, diagnostic tools are proposed for a deep understanding of the procedure.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169207024000074/pdfft?md5=9d271047270035c3248727ce86799d68&pid=1-s2.0-S0169207024000074-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Improving forecasts for heterogeneous time series by “averaging”, with application to food demand forecasts\",\"authors\":\"\",\"doi\":\"10.1016/j.ijforecast.2024.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A common forecasting setting in real-world applications considers a set of possibly heterogeneous time series of the same domain. Due to the different properties of each time series, such as length, obtaining forecasts for each individual time series in a straightforward way is challenging. This paper proposes a general framework utilizing a similarity measure in dynamic time warping to find similar time series to build neighborhoods in a <span><math><mi>k</mi></math></span>-nearest neighbor fashion and improve forecasts of possibly simple models by averaging. Several ways of performing the averaging are suggested, and theoretical arguments underline the usefulness of averaging for forecasting. Additionally, diagnostic tools are proposed for a deep understanding of the procedure.</p></div>\",\"PeriodicalId\":14061,\"journal\":{\"name\":\"International Journal of Forecasting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0169207024000074/pdfft?md5=9d271047270035c3248727ce86799d68&pid=1-s2.0-S0169207024000074-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169207024000074\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207024000074","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

实际应用中常见的预测环境是同一领域的一组可能不同的时间序列。由于每个时间序列的属性(如长度)各不相同,因此以直接的方式获取每个单独时间序列的预测结果具有挑战性。本文提出了一个通用框架,利用动态时间扭曲中的相似度量来寻找相似的时间序列,从而以最近邻的方式建立邻域,并通过平均化来改进可能是简单模型的预测。文中提出了几种进行平均化的方法,并从理论上论证了平均化对预测的有用性。此外,还提出了一些诊断工具,以便深入了解该程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving forecasts for heterogeneous time series by “averaging”, with application to food demand forecasts

A common forecasting setting in real-world applications considers a set of possibly heterogeneous time series of the same domain. Due to the different properties of each time series, such as length, obtaining forecasts for each individual time series in a straightforward way is challenging. This paper proposes a general framework utilizing a similarity measure in dynamic time warping to find similar time series to build neighborhoods in a k-nearest neighbor fashion and improve forecasts of possibly simple models by averaging. Several ways of performing the averaging are suggested, and theoretical arguments underline the usefulness of averaging for forecasting. Additionally, diagnostic tools are proposed for a deep understanding of the procedure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.10
自引率
11.40%
发文量
189
审稿时长
77 days
期刊介绍: The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.
期刊最新文献
On memory-augmented gated recurrent unit network Editorial Board A framework for timely and accessible long-term forecasting of shale gas production based on time series pattern matching Editorial Board Forecasting interest rates with shifting endpoints: The role of the functional demographic age distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1