{"title":"霍尔德电势压力的刚性和通过它们拟合解析函数","authors":"LIANGANG MA, MARK POLLICOTT","doi":"10.1017/etds.2024.9","DOIUrl":null,"url":null,"abstract":"<p>The first part of this work is devoted to the study of higher derivatives of pressure functions of Hölder potentials on shift spaces with finitely many symbols. By describing the derivatives of pressure functions via the central limit theorem for the associated random processes, we discover some rigid relationships between derivatives of various orders. The rigidity imposes obstructions on fitting candidate convex analytic functions by pressure functions of Hölder potentials globally, which answers a question of Kucherenko and Quas. In the second part of the work, we consider fitting candidate analytic germs by pressure functions of locally constant potentials. We prove that all 1-level candidate germs can be realised by pressures of some locally constant potentials, as long as the number of symbols in the symbolic set is large enough. There are also some results on fitting 2-level germs by pressures of locally constant potentials obtained in the work.</p>","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":"53 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rigidity of pressures of Hölder potentials and the fitting of analytic functions through them\",\"authors\":\"LIANGANG MA, MARK POLLICOTT\",\"doi\":\"10.1017/etds.2024.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The first part of this work is devoted to the study of higher derivatives of pressure functions of Hölder potentials on shift spaces with finitely many symbols. By describing the derivatives of pressure functions via the central limit theorem for the associated random processes, we discover some rigid relationships between derivatives of various orders. The rigidity imposes obstructions on fitting candidate convex analytic functions by pressure functions of Hölder potentials globally, which answers a question of Kucherenko and Quas. In the second part of the work, we consider fitting candidate analytic germs by pressure functions of locally constant potentials. We prove that all 1-level candidate germs can be realised by pressures of some locally constant potentials, as long as the number of symbols in the symbolic set is large enough. There are also some results on fitting 2-level germs by pressures of locally constant potentials obtained in the work.</p>\",\"PeriodicalId\":50504,\"journal\":{\"name\":\"Ergodic Theory and Dynamical Systems\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ergodic Theory and Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2024.9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ergodic Theory and Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Rigidity of pressures of Hölder potentials and the fitting of analytic functions through them
The first part of this work is devoted to the study of higher derivatives of pressure functions of Hölder potentials on shift spaces with finitely many symbols. By describing the derivatives of pressure functions via the central limit theorem for the associated random processes, we discover some rigid relationships between derivatives of various orders. The rigidity imposes obstructions on fitting candidate convex analytic functions by pressure functions of Hölder potentials globally, which answers a question of Kucherenko and Quas. In the second part of the work, we consider fitting candidate analytic germs by pressure functions of locally constant potentials. We prove that all 1-level candidate germs can be realised by pressures of some locally constant potentials, as long as the number of symbols in the symbolic set is large enough. There are also some results on fitting 2-level germs by pressures of locally constant potentials obtained in the work.
期刊介绍:
Ergodic Theory and Dynamical Systems focuses on a rich variety of research areas which, although diverse, employ as common themes global dynamical methods. The journal provides a focus for this important and flourishing area of mathematics and brings together many major contributions in the field. The journal acts as a forum for central problems of dynamical systems and of interactions of dynamical systems with areas such as differential geometry, number theory, operator algebras, celestial and statistical mechanics, and biology.