为软处理器设计支持可配置精度的 IEEE 兼容型 FPU

IF 3.1 4区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE ACM Transactions on Reconfigurable Technology and Systems Pub Date : 2024-03-15 DOI:10.1145/3650036
Chris Keilbart, Yuhui Gao, Martin Chua, Eric Matthews, Steven J.E. Wilton, Lesley Shannon
{"title":"为软处理器设计支持可配置精度的 IEEE 兼容型 FPU","authors":"Chris Keilbart, Yuhui Gao, Martin Chua, Eric Matthews, Steven J.E. Wilton, Lesley Shannon","doi":"10.1145/3650036","DOIUrl":null,"url":null,"abstract":"<p>Field Programmable Gate Arrays (FPGAs) are commonly used to accelerate floating-point (FP) applications. Although researchers have extensively studied FPGA FP implementations, existing work has largely focused on standalone operators and frequency-optimized designs. These works are not suitable for FPGA soft processors which are more sensitive to latency, impose a lower frequency ceiling, and require IEEE FP standard compliance. We present an open-source floating-point unit (FPU) for FPGA RISC-V soft processors that is fully IEEE compliant with configurable levels of FP precision. Our design emphasizes runtime performance with 25% lower latency in the most common instructions compared to previous works while maintaining efficient resource utilization. </p><p>Our FPU also allows users to explore various mantissa widths without having to rewrite or recompile their algorithms. We use this to investigate the scalability of our reduced-precision FPU across numerous microbenchmark functions as well as more complex case studies. Our experiments show that applications like the discrete cosine transformation and the Black-Scholes model can realize a speedup of more than 1.35x in conjunction with a 43% and 35% reduction in lookup table and flip-flop resources while experiencing less than a 0.025% average loss in numerical accuracy with a 16-bit mantissa width.</p>","PeriodicalId":49248,"journal":{"name":"ACM Transactions on Reconfigurable Technology and Systems","volume":"18 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing an IEEE-compliant FPU that supports configurable precision for soft processors\",\"authors\":\"Chris Keilbart, Yuhui Gao, Martin Chua, Eric Matthews, Steven J.E. Wilton, Lesley Shannon\",\"doi\":\"10.1145/3650036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Field Programmable Gate Arrays (FPGAs) are commonly used to accelerate floating-point (FP) applications. Although researchers have extensively studied FPGA FP implementations, existing work has largely focused on standalone operators and frequency-optimized designs. These works are not suitable for FPGA soft processors which are more sensitive to latency, impose a lower frequency ceiling, and require IEEE FP standard compliance. We present an open-source floating-point unit (FPU) for FPGA RISC-V soft processors that is fully IEEE compliant with configurable levels of FP precision. Our design emphasizes runtime performance with 25% lower latency in the most common instructions compared to previous works while maintaining efficient resource utilization. </p><p>Our FPU also allows users to explore various mantissa widths without having to rewrite or recompile their algorithms. We use this to investigate the scalability of our reduced-precision FPU across numerous microbenchmark functions as well as more complex case studies. Our experiments show that applications like the discrete cosine transformation and the Black-Scholes model can realize a speedup of more than 1.35x in conjunction with a 43% and 35% reduction in lookup table and flip-flop resources while experiencing less than a 0.025% average loss in numerical accuracy with a 16-bit mantissa width.</p>\",\"PeriodicalId\":49248,\"journal\":{\"name\":\"ACM Transactions on Reconfigurable Technology and Systems\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Reconfigurable Technology and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3650036\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Reconfigurable Technology and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3650036","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

现场可编程门阵列(FPGA)通常用于加速浮点(FP)应用。虽然研究人员对 FPGA FP 实现进行了广泛研究,但现有工作主要集中在独立运算器和频率优化设计上。这些工作不适合 FPGA 软处理器,因为软处理器对延迟更敏感,频率上限更低,而且需要符合 IEEE FP 标准。我们为 FPGA RISC-V 软处理器提出了一种开源浮点运算单元 (FPU),它完全符合 IEEE 标准,具有可配置的 FP 精度水平。我们的设计强调运行时性能,与以前的作品相比,最常用指令的延迟降低了 25%,同时保持了高效的资源利用率。我们的 FPU 还允许用户探索各种尾数宽度,而无需重写或重新编译算法。我们借此研究了我们的减精度 FPU 在众多微基准函数以及更复杂的案例研究中的可扩展性。我们的实验表明,离散余弦变换和布莱克-斯科尔斯模型等应用的速度提高了 1.35 倍以上,同时查找表和触发器资源分别减少了 43% 和 35%,而 16 位尾数宽度的数值精度平均损失不到 0.025%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Designing an IEEE-compliant FPU that supports configurable precision for soft processors

Field Programmable Gate Arrays (FPGAs) are commonly used to accelerate floating-point (FP) applications. Although researchers have extensively studied FPGA FP implementations, existing work has largely focused on standalone operators and frequency-optimized designs. These works are not suitable for FPGA soft processors which are more sensitive to latency, impose a lower frequency ceiling, and require IEEE FP standard compliance. We present an open-source floating-point unit (FPU) for FPGA RISC-V soft processors that is fully IEEE compliant with configurable levels of FP precision. Our design emphasizes runtime performance with 25% lower latency in the most common instructions compared to previous works while maintaining efficient resource utilization.

Our FPU also allows users to explore various mantissa widths without having to rewrite or recompile their algorithms. We use this to investigate the scalability of our reduced-precision FPU across numerous microbenchmark functions as well as more complex case studies. Our experiments show that applications like the discrete cosine transformation and the Black-Scholes model can realize a speedup of more than 1.35x in conjunction with a 43% and 35% reduction in lookup table and flip-flop resources while experiencing less than a 0.025% average loss in numerical accuracy with a 16-bit mantissa width.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Reconfigurable Technology and Systems
ACM Transactions on Reconfigurable Technology and Systems COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-
CiteScore
4.90
自引率
8.70%
发文量
79
审稿时长
>12 weeks
期刊介绍: TRETS is the top journal focusing on research in, on, and with reconfigurable systems and on their underlying technology. The scope, rationale, and coverage by other journals are often limited to particular aspects of reconfigurable technology or reconfigurable systems. TRETS is a journal that covers reconfigurability in its own right. Topics that would be appropriate for TRETS would include all levels of reconfigurable system abstractions and all aspects of reconfigurable technology including platforms, programming environments and application successes that support these systems for computing or other applications. -The board and systems architectures of a reconfigurable platform. -Programming environments of reconfigurable systems, especially those designed for use with reconfigurable systems that will lead to increased programmer productivity. -Languages and compilers for reconfigurable systems. -Logic synthesis and related tools, as they relate to reconfigurable systems. -Applications on which success can be demonstrated. The underlying technology from which reconfigurable systems are developed. (Currently this technology is that of FPGAs, but research on the nature and use of follow-on technologies is appropriate for TRETS.) In considering whether a paper is suitable for TRETS, the foremost question should be whether reconfigurability has been essential to success. Topics such as architecture, programming languages, compilers, and environments, logic synthesis, and high performance applications are all suitable if the context is appropriate. For example, an architecture for an embedded application that happens to use FPGAs is not necessarily suitable for TRETS, but an architecture using FPGAs for which the reconfigurability of the FPGAs is an inherent part of the specifications (perhaps due to a need for re-use on multiple applications) would be appropriate for TRETS.
期刊最新文献
End-to-end codesign of Hessian-aware quantized neural networks for FPGAs DyRecMul: Fast and Low-Cost Approximate Multiplier for FPGAs using Dynamic Reconfiguration Dynamic-ACTS - A Dynamic Graph Analytics Accelerator For HBM-Enabled FPGAs NC-Library: Expanding SystemC Capabilities for Nested reConfigurable Hardware Modelling PQA: Exploring the Potential of Product Quantization in DNN Hardware Acceleration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1