{"title":"随机动态系统的佩伦-弗罗贝尼斯算子滤波器","authors":"Ningxin Liu, Lijian Jiang","doi":"10.1137/23m1547391","DOIUrl":null,"url":null,"abstract":"SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 1, Page 182-211, March 2024. <br/>Abstract.Filtering problems are derived from a sequential minimization of a quadratic function representing a compromise between the model and data. In this paper, we use the Perron–Frobenius operator in a stochastic process to develop a Perron–Frobenius operator filter. The proposed method belongs to Bayesian filtering and works for non-Gaussian distributions for nonlinear stochastic dynamical systems. The recursion of the filtering can be characterized by the composition of the Perron–Frobenius operator and likelihood operator. This gives a significant connection between the Perron–Frobenius operator and Bayesian filtering. We numerically fulfill the recursion by approximating the Perron–Frobenius operator by Ulam’s method. In this way, the posterior measure is represented by a convex combination of the indicator functions in Ulam’s method. To get a low-rank approximation for the Perron–Frobenius operator filter, we take a spectral decomposition for the posterior measure by using the eigenfunctions of the discretized Perron–Frobenius operator. The Perron–Frobenius operator filter employs data instead of flow equations to model the evolution of underlying stochastic dynamical systems. In contrast, standard particle filters require explicit equations or transition probability density for sampling. A few numerical examples are presented to illustrate the advantage of the Perron–Frobenius operator filter over the particle filter and extended Kalman filter.","PeriodicalId":56064,"journal":{"name":"Siam-Asa Journal on Uncertainty Quantification","volume":"15 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perron–Frobenius Operator Filter for Stochastic Dynamical Systems\",\"authors\":\"Ningxin Liu, Lijian Jiang\",\"doi\":\"10.1137/23m1547391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 1, Page 182-211, March 2024. <br/>Abstract.Filtering problems are derived from a sequential minimization of a quadratic function representing a compromise between the model and data. In this paper, we use the Perron–Frobenius operator in a stochastic process to develop a Perron–Frobenius operator filter. The proposed method belongs to Bayesian filtering and works for non-Gaussian distributions for nonlinear stochastic dynamical systems. The recursion of the filtering can be characterized by the composition of the Perron–Frobenius operator and likelihood operator. This gives a significant connection between the Perron–Frobenius operator and Bayesian filtering. We numerically fulfill the recursion by approximating the Perron–Frobenius operator by Ulam’s method. In this way, the posterior measure is represented by a convex combination of the indicator functions in Ulam’s method. To get a low-rank approximation for the Perron–Frobenius operator filter, we take a spectral decomposition for the posterior measure by using the eigenfunctions of the discretized Perron–Frobenius operator. The Perron–Frobenius operator filter employs data instead of flow equations to model the evolution of underlying stochastic dynamical systems. In contrast, standard particle filters require explicit equations or transition probability density for sampling. A few numerical examples are presented to illustrate the advantage of the Perron–Frobenius operator filter over the particle filter and extended Kalman filter.\",\"PeriodicalId\":56064,\"journal\":{\"name\":\"Siam-Asa Journal on Uncertainty Quantification\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siam-Asa Journal on Uncertainty Quantification\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1547391\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam-Asa Journal on Uncertainty Quantification","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/23m1547391","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Perron–Frobenius Operator Filter for Stochastic Dynamical Systems
SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 1, Page 182-211, March 2024. Abstract.Filtering problems are derived from a sequential minimization of a quadratic function representing a compromise between the model and data. In this paper, we use the Perron–Frobenius operator in a stochastic process to develop a Perron–Frobenius operator filter. The proposed method belongs to Bayesian filtering and works for non-Gaussian distributions for nonlinear stochastic dynamical systems. The recursion of the filtering can be characterized by the composition of the Perron–Frobenius operator and likelihood operator. This gives a significant connection between the Perron–Frobenius operator and Bayesian filtering. We numerically fulfill the recursion by approximating the Perron–Frobenius operator by Ulam’s method. In this way, the posterior measure is represented by a convex combination of the indicator functions in Ulam’s method. To get a low-rank approximation for the Perron–Frobenius operator filter, we take a spectral decomposition for the posterior measure by using the eigenfunctions of the discretized Perron–Frobenius operator. The Perron–Frobenius operator filter employs data instead of flow equations to model the evolution of underlying stochastic dynamical systems. In contrast, standard particle filters require explicit equations or transition probability density for sampling. A few numerical examples are presented to illustrate the advantage of the Perron–Frobenius operator filter over the particle filter and extended Kalman filter.
期刊介绍:
SIAM/ASA Journal on Uncertainty Quantification (JUQ) publishes research articles presenting significant mathematical, statistical, algorithmic, and application advances in uncertainty quantification, defined as the interface of complex modeling of processes and data, especially characterizations of the uncertainties inherent in the use of such models. The journal also focuses on related fields such as sensitivity analysis, model validation, model calibration, data assimilation, and code verification. The journal also solicits papers describing new ideas that could lead to significant progress in methodology for uncertainty quantification as well as review articles on particular aspects. The journal is dedicated to nurturing synergistic interactions between the mathematical, statistical, computational, and applications communities involved in uncertainty quantification and related areas. JUQ is jointly offered by SIAM and the American Statistical Association.