{"title":"多带双态磁性量子线中自旋量子比特态隧穿诱导的兰道-齐纳-斯图克尔伯格-马约拉纳样动力学","authors":"S. E. Mkam Tchouobiap, L. C. Fai","doi":"10.1142/s0217979225500134","DOIUrl":null,"url":null,"abstract":"<p>We investigate the transfer between spin quantum bit (qubit) states and study the Landau–Zener–Stückelberg–Majorana (LZSM)-like dynamics of tunneling spin qubits in a multiband two-state magnetic quantum wire. Indeed, within the framework of an optical parabolic potential in a three-dimensional (3D) heterostructure quantum wire and under the influence of an external time-varying magnetic field, a model for a multiband two-state magnetic quantum wire is developed. Here, the external magnetic field is used to coherently manipulate and control spin qubit states. By driving the system through an avoided crossing, we consider the associated effective quantum two-level system (TLS) related to the spin qubit states in each band, driving by an external coherent magnetic field in which the related Hamiltonian is Hermitian, and which generally paves a way to LZSM interferometry. Thus, we establish the analytical expressions of the energy eigenvalues in each band and derive the analytical solution of the dynamical evolution of the tunneling probabilities of the associated TLS. Accordingly, nonadiabatic and adiabatic tunneling probabilities (survival and transition) are calculated for each band of the multiband TLS. In this respect, the nonadiabatic and adiabatic dynamical evolutions of the tunneling probabilities of spin qubit populations in the first four bands, with band quantum numbers <i>n</i> = 0, 1, 2 and 3 are analyzed. As a result, depending on the amplitude strength of the driven magnetic field and the magnitude of the driving frequency, we report two striking nonadiabatic and adiabatic scenarios in each band for both the diabatic and adiabatic states. In this context, driving the two states of each band of the multiband TLS related to the spin qubit states through an avoided level crossing can result in nontrivial and incoherent dynamics at certain phases, resulting to apparent inaccurate probabilities, especially in the case of strong driven magnetic field and high driving frequency.</p>","PeriodicalId":14108,"journal":{"name":"International Journal of Modern Physics B","volume":"120 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Landau–Zener–Stückelberg–Majorana-like dynamics induced by tunneling of spin qubit states in a multiband two-state magnetic quantum wire\",\"authors\":\"S. E. Mkam Tchouobiap, L. C. Fai\",\"doi\":\"10.1142/s0217979225500134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate the transfer between spin quantum bit (qubit) states and study the Landau–Zener–Stückelberg–Majorana (LZSM)-like dynamics of tunneling spin qubits in a multiband two-state magnetic quantum wire. Indeed, within the framework of an optical parabolic potential in a three-dimensional (3D) heterostructure quantum wire and under the influence of an external time-varying magnetic field, a model for a multiband two-state magnetic quantum wire is developed. Here, the external magnetic field is used to coherently manipulate and control spin qubit states. By driving the system through an avoided crossing, we consider the associated effective quantum two-level system (TLS) related to the spin qubit states in each band, driving by an external coherent magnetic field in which the related Hamiltonian is Hermitian, and which generally paves a way to LZSM interferometry. Thus, we establish the analytical expressions of the energy eigenvalues in each band and derive the analytical solution of the dynamical evolution of the tunneling probabilities of the associated TLS. Accordingly, nonadiabatic and adiabatic tunneling probabilities (survival and transition) are calculated for each band of the multiband TLS. In this respect, the nonadiabatic and adiabatic dynamical evolutions of the tunneling probabilities of spin qubit populations in the first four bands, with band quantum numbers <i>n</i> = 0, 1, 2 and 3 are analyzed. As a result, depending on the amplitude strength of the driven magnetic field and the magnitude of the driving frequency, we report two striking nonadiabatic and adiabatic scenarios in each band for both the diabatic and adiabatic states. In this context, driving the two states of each band of the multiband TLS related to the spin qubit states through an avoided level crossing can result in nontrivial and incoherent dynamics at certain phases, resulting to apparent inaccurate probabilities, especially in the case of strong driven magnetic field and high driving frequency.</p>\",\"PeriodicalId\":14108,\"journal\":{\"name\":\"International Journal of Modern Physics B\",\"volume\":\"120 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modern Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217979225500134\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217979225500134","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Landau–Zener–Stückelberg–Majorana-like dynamics induced by tunneling of spin qubit states in a multiband two-state magnetic quantum wire
We investigate the transfer between spin quantum bit (qubit) states and study the Landau–Zener–Stückelberg–Majorana (LZSM)-like dynamics of tunneling spin qubits in a multiband two-state magnetic quantum wire. Indeed, within the framework of an optical parabolic potential in a three-dimensional (3D) heterostructure quantum wire and under the influence of an external time-varying magnetic field, a model for a multiband two-state magnetic quantum wire is developed. Here, the external magnetic field is used to coherently manipulate and control spin qubit states. By driving the system through an avoided crossing, we consider the associated effective quantum two-level system (TLS) related to the spin qubit states in each band, driving by an external coherent magnetic field in which the related Hamiltonian is Hermitian, and which generally paves a way to LZSM interferometry. Thus, we establish the analytical expressions of the energy eigenvalues in each band and derive the analytical solution of the dynamical evolution of the tunneling probabilities of the associated TLS. Accordingly, nonadiabatic and adiabatic tunneling probabilities (survival and transition) are calculated for each band of the multiband TLS. In this respect, the nonadiabatic and adiabatic dynamical evolutions of the tunneling probabilities of spin qubit populations in the first four bands, with band quantum numbers n = 0, 1, 2 and 3 are analyzed. As a result, depending on the amplitude strength of the driven magnetic field and the magnitude of the driving frequency, we report two striking nonadiabatic and adiabatic scenarios in each band for both the diabatic and adiabatic states. In this context, driving the two states of each band of the multiband TLS related to the spin qubit states through an avoided level crossing can result in nontrivial and incoherent dynamics at certain phases, resulting to apparent inaccurate probabilities, especially in the case of strong driven magnetic field and high driving frequency.
期刊介绍:
Launched in 1987, the International Journal of Modern Physics B covers the most important aspects and the latest developments in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low dimensional materials. One unique feature of this journal is its review section which contains articles with permanent research value besides the state-of-the-art research work in the relevant subject areas.