晶界偏析和氧空位湮灭对生物医学应用中掺杂氧化钴的 3Y-TZP 陶瓷耐老化性的影响

IF 3.6 4区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Reviews on Advanced Materials Science Pub Date : 2024-03-16 DOI:10.1515/rams-2023-0159
Shide Yu, Zhenyu Chen, Yiyin Sun, Dahong Huang, Ting Sun
{"title":"晶界偏析和氧空位湮灭对生物医学应用中掺杂氧化钴的 3Y-TZP 陶瓷耐老化性的影响","authors":"Shide Yu, Zhenyu Chen, Yiyin Sun, Dahong Huang, Ting Sun","doi":"10.1515/rams-2023-0159","DOIUrl":null,"url":null,"abstract":"This study aims to investigate the diffusion stabilization process of nano-Co<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> during the non-precursor transformation of 3Y-TZP. 3Y-TZP was set as the control group, and the experimental groups were 0.1–0.3 mol% nano-Co<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>-doped 3Y-TZP. The samples were prepared by the ball milling process, isostatic cool pressing, and sintering. All samples were hydrothermally treated at 134°C and 2 bar for different time periods. The resistance to low-temperature degradation of nano-Co<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>-doped 3Y-TZP was analyzed by X-ray diffraction. The microstructure of zirconia ceramic samples was determined by scanning electron microscopy, transmission electron microscopy, atomic force microscopy, and electron paramagnetic resonance studies. The addition of nano-Co<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> into 3Y-TZP resulted in higher hydrothermal aging resistance than 3Y-TZP. The addition of 0.2 mol% nano-Co<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> dopants resulted in the highest hydrothermal aging resistance among nano-Co<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>-doped 3Y-TZP ceramics. The grain sizes of 3Y-0.2Co are smaller than those in the control group. With the increase of cobaltous oxide doping contents, the segregation of Co<jats:sup>3+</jats:sup> ions at the crystal boundary increased. The content of oxygen vacancies on the surface of the sample increased with the increase of the Co<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> doping content. The oxygen vacancy concentrations of 3Y-0.2Co increased obviously after aging. 3Y-0.1Co, 3Y-0.3Co, and the control showed decreased oxygen vacancy concentrations after aging. Trivalent element doping of 3Y-TZP effectively improved the aging resistance of 3Y-TZP. The addition of 0.2 mol% nano-Co<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> resulted in the highest hydrothermal aging resistance. Improved aging resistance is attributed to the nano-Co<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> doping resulting in the 3Y-TZP grain size inhibition, grain boundary segregation of cobalt ions, and oxygen vacancy maintenance. This work is expected to provide an effective reference for the development and application of budget dental materials by regulating grain boundary engineering.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":"143 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of grain boundary segregation and oxygen vacancy annihilation on aging resistance of cobalt oxide-doped 3Y-TZP ceramics for biomedical applications\",\"authors\":\"Shide Yu, Zhenyu Chen, Yiyin Sun, Dahong Huang, Ting Sun\",\"doi\":\"10.1515/rams-2023-0159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to investigate the diffusion stabilization process of nano-Co<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> during the non-precursor transformation of 3Y-TZP. 3Y-TZP was set as the control group, and the experimental groups were 0.1–0.3 mol% nano-Co<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>-doped 3Y-TZP. The samples were prepared by the ball milling process, isostatic cool pressing, and sintering. All samples were hydrothermally treated at 134°C and 2 bar for different time periods. The resistance to low-temperature degradation of nano-Co<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>-doped 3Y-TZP was analyzed by X-ray diffraction. The microstructure of zirconia ceramic samples was determined by scanning electron microscopy, transmission electron microscopy, atomic force microscopy, and electron paramagnetic resonance studies. The addition of nano-Co<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> into 3Y-TZP resulted in higher hydrothermal aging resistance than 3Y-TZP. The addition of 0.2 mol% nano-Co<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> dopants resulted in the highest hydrothermal aging resistance among nano-Co<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>-doped 3Y-TZP ceramics. The grain sizes of 3Y-0.2Co are smaller than those in the control group. With the increase of cobaltous oxide doping contents, the segregation of Co<jats:sup>3+</jats:sup> ions at the crystal boundary increased. The content of oxygen vacancies on the surface of the sample increased with the increase of the Co<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> doping content. The oxygen vacancy concentrations of 3Y-0.2Co increased obviously after aging. 3Y-0.1Co, 3Y-0.3Co, and the control showed decreased oxygen vacancy concentrations after aging. Trivalent element doping of 3Y-TZP effectively improved the aging resistance of 3Y-TZP. The addition of 0.2 mol% nano-Co<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> resulted in the highest hydrothermal aging resistance. Improved aging resistance is attributed to the nano-Co<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> doping resulting in the 3Y-TZP grain size inhibition, grain boundary segregation of cobalt ions, and oxygen vacancy maintenance. This work is expected to provide an effective reference for the development and application of budget dental materials by regulating grain boundary engineering.\",\"PeriodicalId\":54484,\"journal\":{\"name\":\"Reviews on Advanced Materials Science\",\"volume\":\"143 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews on Advanced Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/rams-2023-0159\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews on Advanced Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/rams-2023-0159","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在探讨纳米 Co2O3 在 3Y-TZP 非前驱体转化过程中的扩散稳定过程。以 3Y-TZP 为对照组,实验组为掺杂 0.1-0.3 mol% 纳米 Co2O3 的 3Y-TZP。样品通过球磨、等静压和烧结工艺制备。所有样品都在 134°C 和 2 bar 的温度下进行了不同时间段的水热处理。通过 X 射线衍射分析了掺杂纳米 Co2O3 的 3Y-TZP 的耐低温降解性。通过扫描电子显微镜、透射电子显微镜、原子力显微镜和电子顺磁共振研究确定了氧化锆陶瓷样品的微观结构。在 3Y-TZP 中加入纳米 Co2O3 可获得比 3Y-TZP 更高的耐水热老化性。在掺杂纳米 Co2O3 的 3Y-TZP 陶瓷中,添加 0.2 mol% 纳米 Co2O3 的耐水热老化性最高。3Y-0.2Co 的晶粒尺寸小于对照组。随着氧化钴掺杂量的增加,Co3+ 离子在晶体边界的偏析增加。样品表面的氧空位含量随着 Co2O3 掺杂含量的增加而增加。3Y-0.2Co 的氧空位浓度在老化后明显增加。3Y-0.1Co、3Y-0.3Co 和对照组的氧空位浓度在老化后有所下降。在 3Y-TZP 中掺杂三价元素可有效提高 3Y-TZP 的耐老化性。添加 0.2 mol% 的纳米 Co2O3 可获得最高的耐水热老化性。耐老化性的提高归因于纳米 Co2O3 的掺入导致了 3Y-TZP 晶粒尺寸的抑制、钴离子的晶界偏析和氧空位的维持。这项研究有望通过调节晶界工程为预算牙科材料的开发和应用提供有效参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of grain boundary segregation and oxygen vacancy annihilation on aging resistance of cobalt oxide-doped 3Y-TZP ceramics for biomedical applications
This study aims to investigate the diffusion stabilization process of nano-Co2O3 during the non-precursor transformation of 3Y-TZP. 3Y-TZP was set as the control group, and the experimental groups were 0.1–0.3 mol% nano-Co2O3-doped 3Y-TZP. The samples were prepared by the ball milling process, isostatic cool pressing, and sintering. All samples were hydrothermally treated at 134°C and 2 bar for different time periods. The resistance to low-temperature degradation of nano-Co2O3-doped 3Y-TZP was analyzed by X-ray diffraction. The microstructure of zirconia ceramic samples was determined by scanning electron microscopy, transmission electron microscopy, atomic force microscopy, and electron paramagnetic resonance studies. The addition of nano-Co2O3 into 3Y-TZP resulted in higher hydrothermal aging resistance than 3Y-TZP. The addition of 0.2 mol% nano-Co2O3 dopants resulted in the highest hydrothermal aging resistance among nano-Co2O3-doped 3Y-TZP ceramics. The grain sizes of 3Y-0.2Co are smaller than those in the control group. With the increase of cobaltous oxide doping contents, the segregation of Co3+ ions at the crystal boundary increased. The content of oxygen vacancies on the surface of the sample increased with the increase of the Co2O3 doping content. The oxygen vacancy concentrations of 3Y-0.2Co increased obviously after aging. 3Y-0.1Co, 3Y-0.3Co, and the control showed decreased oxygen vacancy concentrations after aging. Trivalent element doping of 3Y-TZP effectively improved the aging resistance of 3Y-TZP. The addition of 0.2 mol% nano-Co2O3 resulted in the highest hydrothermal aging resistance. Improved aging resistance is attributed to the nano-Co2O3 doping resulting in the 3Y-TZP grain size inhibition, grain boundary segregation of cobalt ions, and oxygen vacancy maintenance. This work is expected to provide an effective reference for the development and application of budget dental materials by regulating grain boundary engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reviews on Advanced Materials Science
Reviews on Advanced Materials Science 工程技术-材料科学:综合
CiteScore
5.10
自引率
11.10%
发文量
43
审稿时长
3.5 months
期刊介绍: Reviews on Advanced Materials Science is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in the area of theoretical and experimental studies of advanced materials. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Reviews on Advanced Materials Science is listed inter alia by Clarivate Analytics (formerly Thomson Reuters) - Current Contents/Physical, Chemical, and Earth Sciences (CC/PC&ES), JCR and SCIE. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.
期刊最新文献
Toward sustainability: Integrating experimental study and data-driven modeling for eco-friendly paver blocks containing plastic waste A sawtooth constitutive model describing strain hardening and multiple cracking of ECC under uniaxial tension Predicting mechanical properties of sustainable green concrete using novel machine learning: Stacking and gene expression programming Producing sustainable binding materials using marble waste blended with fly ash and rice husk ash for building materials Parameter optimization for ultrasonic-assisted grinding of γ-TiAl intermetallics: A gray relational analysis approach with surface integrity evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1