{"title":"利用新型草蜢优化算法改进光伏系统的全局最大功率点跟踪技术","authors":"T. Tamilarasan, M. V. Suganyadevi","doi":"10.1007/s40998-024-00709-x","DOIUrl":null,"url":null,"abstract":"<p>The performance of solar photovoltaic (PV) panels is entirely determined by ambient temperature, solar irradiance, and dynamic environmental conditions. As a result, the photovoltaic system exhibits multiple peaks in the I-V and P-V curves during partial shading conditions (PSC), which significantly reduces power output. The maximum power point tracking (MPPT) method is essential for extracting maximum power from the PV panel during PSC. With conformist MPPT algorithms, determining the maximum power point is unrealistic. To overcome the constraints, this paper proposes the grasshopper optimisation algorithm (GOA), which imitates the behaviour of grasshopper swarms in nature and is capable of extracting maximum power even during unfavourable shading conditions. The performance assessment of GOA method has been carried out in the MATLAB/SIMULINK environment. This algorithm effectiveness is validated by comparing its performance with conventional and other most prominent global search counterparts. The proposed algorithm is validated in real-time hardware with boost converter through different PV array pattern. The outcome demonstrates the effectiveness of the proposed algorithm which drastically reduces the computation time and performs rapidly and precisely to extract the global maximum peak with minimal oscillations.</p>","PeriodicalId":49064,"journal":{"name":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","volume":"144 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improvement of Global Maximum Power Point Tracking Using a Novel Grasshopper Optimisation Algorithm of Photovoltaic System\",\"authors\":\"T. Tamilarasan, M. V. Suganyadevi\",\"doi\":\"10.1007/s40998-024-00709-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The performance of solar photovoltaic (PV) panels is entirely determined by ambient temperature, solar irradiance, and dynamic environmental conditions. As a result, the photovoltaic system exhibits multiple peaks in the I-V and P-V curves during partial shading conditions (PSC), which significantly reduces power output. The maximum power point tracking (MPPT) method is essential for extracting maximum power from the PV panel during PSC. With conformist MPPT algorithms, determining the maximum power point is unrealistic. To overcome the constraints, this paper proposes the grasshopper optimisation algorithm (GOA), which imitates the behaviour of grasshopper swarms in nature and is capable of extracting maximum power even during unfavourable shading conditions. The performance assessment of GOA method has been carried out in the MATLAB/SIMULINK environment. This algorithm effectiveness is validated by comparing its performance with conventional and other most prominent global search counterparts. The proposed algorithm is validated in real-time hardware with boost converter through different PV array pattern. The outcome demonstrates the effectiveness of the proposed algorithm which drastically reduces the computation time and performs rapidly and precisely to extract the global maximum peak with minimal oscillations.</p>\",\"PeriodicalId\":49064,\"journal\":{\"name\":\"Iranian Journal of Science and Technology-Transactions of Electrical Engineering\",\"volume\":\"144 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Science and Technology-Transactions of Electrical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40998-024-00709-x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40998-024-00709-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An improvement of Global Maximum Power Point Tracking Using a Novel Grasshopper Optimisation Algorithm of Photovoltaic System
The performance of solar photovoltaic (PV) panels is entirely determined by ambient temperature, solar irradiance, and dynamic environmental conditions. As a result, the photovoltaic system exhibits multiple peaks in the I-V and P-V curves during partial shading conditions (PSC), which significantly reduces power output. The maximum power point tracking (MPPT) method is essential for extracting maximum power from the PV panel during PSC. With conformist MPPT algorithms, determining the maximum power point is unrealistic. To overcome the constraints, this paper proposes the grasshopper optimisation algorithm (GOA), which imitates the behaviour of grasshopper swarms in nature and is capable of extracting maximum power even during unfavourable shading conditions. The performance assessment of GOA method has been carried out in the MATLAB/SIMULINK environment. This algorithm effectiveness is validated by comparing its performance with conventional and other most prominent global search counterparts. The proposed algorithm is validated in real-time hardware with boost converter through different PV array pattern. The outcome demonstrates the effectiveness of the proposed algorithm which drastically reduces the computation time and performs rapidly and precisely to extract the global maximum peak with minimal oscillations.
期刊介绍:
Transactions of Electrical Engineering is to foster the growth of scientific research in all branches of electrical engineering and its related grounds and to provide a medium by means of which the fruits of these researches may be brought to the attentionof the world’s scientific communities.
The journal has the focus on the frontier topics in the theoretical, mathematical, numerical, experimental and scientific developments in electrical engineering as well
as applications of established techniques to new domains in various electical engineering disciplines such as:
Bio electric, Bio mechanics, Bio instrument, Microwaves, Wave Propagation, Communication Theory, Channel Estimation, radar & sonar system, Signal Processing, image processing, Artificial Neural Networks, Data Mining and Machine Learning, Fuzzy Logic and Systems, Fuzzy Control, Optimal & Robust ControlNavigation & Estimation Theory, Power Electronics & Drives, Power Generation & Management The editors will welcome papers from all professors and researchers from universities, research centers,
organizations, companies and industries from all over the world in the hope that this will advance the scientific standards of the journal and provide a channel of communication between Iranian Scholars and their colleague in other parts of the world.