分数哈特里方程和波霍扎耶夫等式的无限多自由或规定质量解

IF 2.1 2区 数学 Q1 MATHEMATICS Advanced Nonlinear Studies Pub Date : 2024-03-14 DOI:10.1515/ans-2023-0110
Silvia Cingolani, Marco Gallo, Kazunaga Tanaka
{"title":"分数哈特里方程和波霍扎耶夫等式的无限多自由或规定质量解","authors":"Silvia Cingolani, Marco Gallo, Kazunaga Tanaka","doi":"10.1515/ans-2023-0110","DOIUrl":null,"url":null,"abstract":"In this paper we study the following nonlinear fractional Hartree (or Choquard-Pekar) equation <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msup> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> </m:msup> <m:mi>u</m:mi> <m:mo>+</m:mo> <m:mi>μ</m:mi> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>I</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msub> <m:mo>*</m:mo> <m:mi>F</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>F</m:mi> </m:mrow> <m:mrow> <m:mo>′</m:mo> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mtext> </m:mtext> <m:mtext>in</m:mtext> <m:mspace width=\"0.3333em\" /> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> <m:mo>,</m:mo> </m:math> <jats:tex-math> ${\\left(-{\\Delta}\\right)}^{s}u+\\mu u=\\left({I}_{\\alpha }{\\ast}F\\left(u\\right)\\right){F}^{\\prime }\\left(u\\right)\\quad \\text{in} {\\mathbb{R}}^{N},$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0110_ineq_001.png\" /> </jats:alternatives> </jats:inline-formula> (*) where <jats:italic>μ</jats:italic> &gt; 0, <jats:italic>s</jats:italic> ∈ (0, 1), <jats:italic>N</jats:italic> ≥ 2, <jats:italic>α</jats:italic> ∈ (0, <jats:italic>N</jats:italic>), <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msub> <m:mrow> <m:mi>I</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msub> <m:mo>∼</m:mo> <m:mfrac> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>x</m:mi> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mrow> <m:mi>N</m:mi> <m:mo>−</m:mo> <m:mi>α</m:mi> </m:mrow> </m:msup> </m:mrow> </m:mfrac> </m:math> <jats:tex-math> ${I}_{\\alpha }\\sim \\frac{1}{\\vert x{\\vert }^{N-\\alpha }}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0110_ineq_002.png\" /> </jats:alternatives> </jats:inline-formula> is the Riesz potential, and <jats:italic>F</jats:italic> is a general subcritical nonlinearity. The goal is to prove existence of multiple (radially symmetric) solutions <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mi>u</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi>H</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:tex-math> $u\\in {H}^{s}\\left({\\mathbb{R}}^{N}\\right)$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0110_ineq_003.png\" /> </jats:alternatives> </jats:inline-formula>, by assuming <jats:italic>F</jats:italic> odd or even: we consider both the case <jats:italic>μ</jats:italic> &gt; 0 fixed and the case <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msub> <m:mrow> <m:mo>∫</m:mo> </m:mrow> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:mrow> </m:msub> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mo>=</m:mo> <m:mi>m</m:mi> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> </m:math> <jats:tex-math> ${\\int }_{{\\mathbb{R}}^{N}}{u}^{2}=m{ &gt;}0$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0110_ineq_004.png\" /> </jats:alternatives> </jats:inline-formula> prescribed. Here we also simplify some arguments developed for <jats:italic>s</jats:italic> = 1 (S. Cingolani, M. Gallo, and K. Tanaka, “Multiple solutions for the nonlinear Choquard equation with even or odd nonlinearities,” <jats:italic>Calc. Var. Partial Differ. Equ.</jats:italic>, vol. 61, no. 68, p. 34, 2022). A key point in the proof is given by the research of suitable multidimensional odd paths, which was done in the local case by Berestycki and Lions (H. Berestycki and P.-L. Lions, “Nonlinear scalar field equations II: existence of infinitely many solutions,” <jats:italic>Arch. Ration. Mech. Anal.</jats:italic>, vol. 82, no. 4, pp. 347–375, 1983); for (*) the nonlocalities play indeed a special role. In particular, some properties of these paths are needed in the asymptotic study (as <jats:italic>μ</jats:italic> varies) of the mountain pass values of the unconstrained problem, then exploited to describe the geometry of the constrained problem and detect infinitely many normalized solutions for any <jats:italic>m</jats:italic> &gt; 0. The found solutions satisfy in addition a Pohozaev identity: in this paper we further investigate the validity of this identity for solutions of doubly nonlocal equations under a <jats:italic>C</jats:italic> <jats:sup>1</jats:sup>-regularity.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"80 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinitely many free or prescribed mass solutions for fractional Hartree equations and Pohozaev identities\",\"authors\":\"Silvia Cingolani, Marco Gallo, Kazunaga Tanaka\",\"doi\":\"10.1515/ans-2023-0110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the following nonlinear fractional Hartree (or Choquard-Pekar) equation <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:msup> <m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant=\\\"normal\\\">Δ</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> </m:msup> <m:mi>u</m:mi> <m:mo>+</m:mo> <m:mi>μ</m:mi> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>I</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msub> <m:mo>*</m:mo> <m:mi>F</m:mi> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>F</m:mi> </m:mrow> <m:mrow> <m:mo>′</m:mo> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mtext> </m:mtext> <m:mtext>in</m:mtext> <m:mspace width=\\\"0.3333em\\\" /> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> <m:mo>,</m:mo> </m:math> <jats:tex-math> ${\\\\left(-{\\\\Delta}\\\\right)}^{s}u+\\\\mu u=\\\\left({I}_{\\\\alpha }{\\\\ast}F\\\\left(u\\\\right)\\\\right){F}^{\\\\prime }\\\\left(u\\\\right)\\\\quad \\\\text{in} {\\\\mathbb{R}}^{N},$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0110_ineq_001.png\\\" /> </jats:alternatives> </jats:inline-formula> (*) where <jats:italic>μ</jats:italic> &gt; 0, <jats:italic>s</jats:italic> ∈ (0, 1), <jats:italic>N</jats:italic> ≥ 2, <jats:italic>α</jats:italic> ∈ (0, <jats:italic>N</jats:italic>), <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:msub> <m:mrow> <m:mi>I</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msub> <m:mo>∼</m:mo> <m:mfrac> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> <m:mi>x</m:mi> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> </m:mrow> <m:mrow> <m:mi>N</m:mi> <m:mo>−</m:mo> <m:mi>α</m:mi> </m:mrow> </m:msup> </m:mrow> </m:mfrac> </m:math> <jats:tex-math> ${I}_{\\\\alpha }\\\\sim \\\\frac{1}{\\\\vert x{\\\\vert }^{N-\\\\alpha }}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0110_ineq_002.png\\\" /> </jats:alternatives> </jats:inline-formula> is the Riesz potential, and <jats:italic>F</jats:italic> is a general subcritical nonlinearity. The goal is to prove existence of multiple (radially symmetric) solutions <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:mi>u</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi>H</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:math> <jats:tex-math> $u\\\\in {H}^{s}\\\\left({\\\\mathbb{R}}^{N}\\\\right)$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0110_ineq_003.png\\\" /> </jats:alternatives> </jats:inline-formula>, by assuming <jats:italic>F</jats:italic> odd or even: we consider both the case <jats:italic>μ</jats:italic> &gt; 0 fixed and the case <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:msub> <m:mrow> <m:mo>∫</m:mo> </m:mrow> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:mrow> </m:msub> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mo>=</m:mo> <m:mi>m</m:mi> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> </m:math> <jats:tex-math> ${\\\\int }_{{\\\\mathbb{R}}^{N}}{u}^{2}=m{ &gt;}0$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0110_ineq_004.png\\\" /> </jats:alternatives> </jats:inline-formula> prescribed. Here we also simplify some arguments developed for <jats:italic>s</jats:italic> = 1 (S. Cingolani, M. Gallo, and K. Tanaka, “Multiple solutions for the nonlinear Choquard equation with even or odd nonlinearities,” <jats:italic>Calc. Var. Partial Differ. Equ.</jats:italic>, vol. 61, no. 68, p. 34, 2022). A key point in the proof is given by the research of suitable multidimensional odd paths, which was done in the local case by Berestycki and Lions (H. Berestycki and P.-L. Lions, “Nonlinear scalar field equations II: existence of infinitely many solutions,” <jats:italic>Arch. Ration. Mech. Anal.</jats:italic>, vol. 82, no. 4, pp. 347–375, 1983); for (*) the nonlocalities play indeed a special role. In particular, some properties of these paths are needed in the asymptotic study (as <jats:italic>μ</jats:italic> varies) of the mountain pass values of the unconstrained problem, then exploited to describe the geometry of the constrained problem and detect infinitely many normalized solutions for any <jats:italic>m</jats:italic> &gt; 0. The found solutions satisfy in addition a Pohozaev identity: in this paper we further investigate the validity of this identity for solutions of doubly nonlocal equations under a <jats:italic>C</jats:italic> <jats:sup>1</jats:sup>-regularity.\",\"PeriodicalId\":7191,\"journal\":{\"name\":\"Advanced Nonlinear Studies\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nonlinear Studies\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2023-0110\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2023-0110","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了以下非线性分数哈特里(或乔夸-佩卡)方程 ( - Δ ) s u + μ u = ( I α * F ( u ) ) F ′ ( u ) in R N , ${left(-{Delta}\right)}^{s}u+\mu u=\left({I}_{\alpha }\{ast}F\left(u\right)\right){F}^{prime }\left(u\right)\quad \text{in}{mathbb{R}}^{N},$ (*) 其中 μ > 0, s∈ (0, 1), N ≥ 2, α∈ (0, N), I α ∼ 1 | x | N - α ${I}_{\alpha }\sim \frac{1}{vert x\vert }^{N-\alpha }}$ 是里兹势,F 是一般的次临界非线性。我们的目标是通过假设 F 为奇数或偶数,证明多个(径向对称)解 u∈ H s ( R N ) $u\in {H}^{s}\left({\mathbb{R}}^{N}\right)$ 的存在性:我们既考虑了 μ > 0 固定的情况,也考虑了 ∫ R N u 2 = m > 0 ${\int }_{\mathbb{R}}^{N}}{u}^{2}=m{ >}0$ 规定的情况。这里我们还简化了一些针对 s = 1 的论证(S. Cingolani, M. Gallo, and K. Tanaka, "Multiple solutions for the nonlinear Choquard equation with even or odd nonlinearities," Calc.Var.Partial Differ.Equ.,第 61 卷,第 68 期,第 34 页,2022 年)。证明中的一个关键点是研究合适的多维奇数路径,这是由 Berestycki 和 Lions 在局部情况下完成的(H. Berestycki and P.-L. Lions, "Nonlinear scalar field equations II: existence of infinitely many solutions," Arch.Ration.Mech.Anal.4, pp.特别是,在对无约束问题的山口值进行渐近研究(当 μ 变化时)时,需要这些路径的一些特性,然后利用这些特性来描述约束问题的几何形状,并检测出任意 m > 0 的无限多归一化解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Infinitely many free or prescribed mass solutions for fractional Hartree equations and Pohozaev identities
In this paper we study the following nonlinear fractional Hartree (or Choquard-Pekar) equation ( Δ ) s u + μ u = ( I α * F ( u ) ) F ( u ) in R N , ${\left(-{\Delta}\right)}^{s}u+\mu u=\left({I}_{\alpha }{\ast}F\left(u\right)\right){F}^{\prime }\left(u\right)\quad \text{in} {\mathbb{R}}^{N},$ (*) where μ > 0, s ∈ (0, 1), N ≥ 2, α ∈ (0, N), I α 1 | x | N α ${I}_{\alpha }\sim \frac{1}{\vert x{\vert }^{N-\alpha }}$ is the Riesz potential, and F is a general subcritical nonlinearity. The goal is to prove existence of multiple (radially symmetric) solutions u H s ( R N ) $u\in {H}^{s}\left({\mathbb{R}}^{N}\right)$ , by assuming F odd or even: we consider both the case μ > 0 fixed and the case R N u 2 = m > 0 ${\int }_{{\mathbb{R}}^{N}}{u}^{2}=m{ >}0$ prescribed. Here we also simplify some arguments developed for s = 1 (S. Cingolani, M. Gallo, and K. Tanaka, “Multiple solutions for the nonlinear Choquard equation with even or odd nonlinearities,” Calc. Var. Partial Differ. Equ., vol. 61, no. 68, p. 34, 2022). A key point in the proof is given by the research of suitable multidimensional odd paths, which was done in the local case by Berestycki and Lions (H. Berestycki and P.-L. Lions, “Nonlinear scalar field equations II: existence of infinitely many solutions,” Arch. Ration. Mech. Anal., vol. 82, no. 4, pp. 347–375, 1983); for (*) the nonlocalities play indeed a special role. In particular, some properties of these paths are needed in the asymptotic study (as μ varies) of the mountain pass values of the unconstrained problem, then exploited to describe the geometry of the constrained problem and detect infinitely many normalized solutions for any m > 0. The found solutions satisfy in addition a Pohozaev identity: in this paper we further investigate the validity of this identity for solutions of doubly nonlocal equations under a C 1-regularity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
期刊最新文献
Solutions to the coupled Schrödinger systems with steep potential well and critical exponent Solitons to the Willmore flow Remarks on analytical solutions to compressible Navier–Stokes equations with free boundaries Homogenization of Smoluchowski-type equations with transmission boundary conditions Regularity of center-outward distribution functions in non-convex domains
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1