在介孔碳和 Ti3C2TX MXene 上空间约束合成 TiNb2O7 量子点以提高锂存储能力

IF 10.7 1区 工程技术 Q1 CHEMISTRY, PHYSICAL Green Energy & Environment Pub Date : 2024-03-16 DOI:10.1016/j.gee.2024.03.004
Daoguang Sun, Cheng Tang, Haitao Li, Xinlin Zhang, Guanjia Zhu, Zhen-Dong Huang, Aijun Du, Haijiao Zhang
{"title":"在介孔碳和 Ti3C2TX MXene 上空间约束合成 TiNb2O7 量子点以提高锂存储能力","authors":"Daoguang Sun, Cheng Tang, Haitao Li, Xinlin Zhang, Guanjia Zhu, Zhen-Dong Huang, Aijun Du, Haijiao Zhang","doi":"10.1016/j.gee.2024.03.004","DOIUrl":null,"url":null,"abstract":"TiNbO has been emerged as one of the most promising electrode materials for high-energy lithium-ion batteries. However, limited by the slow electron/ion transport kinetics, and insufficient active sites in the bulk structure, the TiNbO electrode still suffers from unsatisfactory lithium storage performance. Herein, we demonstrate a spatially confined strategy toward a novel TiNbO-NMC/MXene composite through a triblock copolymer-directed one-pot solvothermal route, where TiNbO quantum dots with a particle size of 2-3 nm are evenly embedded into N-doped mesoporous carbon (NMC) and TiCT MXene. Impressively, the as-prepared TiNbO-NMC/MXene anode exhibits a high reversible capacity (486.2 mAh g at 0.1 A g after 100 cycles) and long cycle lifespan (363.4 mAh g at 1 A g after 500 cycles). Both experimental and theorical results further demonstrate that such a superior lithium storage performance is mainly ascribed to the synergistic effect among 0D TiNbO quantum dots, 2D TiCT MXene nanosheets, and N-doped mesoporous carbon. The strategy presented also opens up new horizon for space-confined preparation of high-performance electrode materials.","PeriodicalId":12744,"journal":{"name":"Green Energy & Environment","volume":"23 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatially confined synthesis of TiNb2O7 quantum dots onto mesoporous carbon and Ti3C2TX MXene for boosting lithium storage\",\"authors\":\"Daoguang Sun, Cheng Tang, Haitao Li, Xinlin Zhang, Guanjia Zhu, Zhen-Dong Huang, Aijun Du, Haijiao Zhang\",\"doi\":\"10.1016/j.gee.2024.03.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"TiNbO has been emerged as one of the most promising electrode materials for high-energy lithium-ion batteries. However, limited by the slow electron/ion transport kinetics, and insufficient active sites in the bulk structure, the TiNbO electrode still suffers from unsatisfactory lithium storage performance. Herein, we demonstrate a spatially confined strategy toward a novel TiNbO-NMC/MXene composite through a triblock copolymer-directed one-pot solvothermal route, where TiNbO quantum dots with a particle size of 2-3 nm are evenly embedded into N-doped mesoporous carbon (NMC) and TiCT MXene. Impressively, the as-prepared TiNbO-NMC/MXene anode exhibits a high reversible capacity (486.2 mAh g at 0.1 A g after 100 cycles) and long cycle lifespan (363.4 mAh g at 1 A g after 500 cycles). Both experimental and theorical results further demonstrate that such a superior lithium storage performance is mainly ascribed to the synergistic effect among 0D TiNbO quantum dots, 2D TiCT MXene nanosheets, and N-doped mesoporous carbon. The strategy presented also opens up new horizon for space-confined preparation of high-performance electrode materials.\",\"PeriodicalId\":12744,\"journal\":{\"name\":\"Green Energy & Environment\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Energy & Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.gee.2024.03.004\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy & Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.gee.2024.03.004","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

TiNbO 已成为高能锂离子电池最有前途的电极材料之一。然而,受限于缓慢的电子/离子传输动力学以及块体结构中活性位点的不足,TiNbO 电极的锂存储性能仍然不尽如人意。在本文中,我们通过三嵌段共聚物引导的一锅溶热路线,展示了一种新型 TiNbO-NMC/MXene 复合材料的空间限制策略,即将粒径为 2-3 纳米的 TiNbO 量子点均匀地嵌入 N 掺杂介孔碳(NMC)和 TiCT MXene 中。令人印象深刻的是,制备的 TiNbO-NMC/MXene 阳极具有高可逆容量(100 次循环后,0.1 A g 时为 486.2 mAh g)和长循环寿命(500 次循环后,1 A g 时为 363.4 mAh g)。实验和理论结果进一步证明,如此优异的锂存储性能主要归功于 0D TiNbO 量子点、2D TiCT MXene 纳米片和掺杂 N 的介孔碳之间的协同效应。所提出的策略也为高性能电极材料的空间封闭制备开辟了新天地。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatially confined synthesis of TiNb2O7 quantum dots onto mesoporous carbon and Ti3C2TX MXene for boosting lithium storage
TiNbO has been emerged as one of the most promising electrode materials for high-energy lithium-ion batteries. However, limited by the slow electron/ion transport kinetics, and insufficient active sites in the bulk structure, the TiNbO electrode still suffers from unsatisfactory lithium storage performance. Herein, we demonstrate a spatially confined strategy toward a novel TiNbO-NMC/MXene composite through a triblock copolymer-directed one-pot solvothermal route, where TiNbO quantum dots with a particle size of 2-3 nm are evenly embedded into N-doped mesoporous carbon (NMC) and TiCT MXene. Impressively, the as-prepared TiNbO-NMC/MXene anode exhibits a high reversible capacity (486.2 mAh g at 0.1 A g after 100 cycles) and long cycle lifespan (363.4 mAh g at 1 A g after 500 cycles). Both experimental and theorical results further demonstrate that such a superior lithium storage performance is mainly ascribed to the synergistic effect among 0D TiNbO quantum dots, 2D TiCT MXene nanosheets, and N-doped mesoporous carbon. The strategy presented also opens up new horizon for space-confined preparation of high-performance electrode materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Green Energy & Environment
Green Energy & Environment Energy-Renewable Energy, Sustainability and the Environment
CiteScore
16.80
自引率
3.80%
发文量
332
审稿时长
12 days
期刊介绍: Green Energy & Environment (GEE) is an internationally recognized journal that undergoes a rigorous peer-review process. It focuses on interdisciplinary research related to green energy and the environment, covering a wide range of topics including biofuel and bioenergy, energy storage and networks, catalysis for sustainable processes, and materials for energy and the environment. GEE has a broad scope and encourages the submission of original and innovative research in both fundamental and engineering fields. Additionally, GEE serves as a platform for discussions, summaries, reviews, and previews of the impact of green energy on the eco-environment.
期刊最新文献
Construction of two-dimensional heterojunctions based on metal-free semiconductor materials and Covalent Organic Frameworks for exceptional solar energy catalysis Recent advancements in two-dimensional transition metal dichalcogenide materials towards hydrogen-evolution electrocatalysis Research on the application of defect engineering in the field of environmental catalysis Recyclable bio-based epoxy resin thermoset polymer from wood for circular economy Ti3C2 MXene nanosheets integrated cobalt-doped nickel hydroxide heterostructured composite: An efficient electrocatalyst for overall water-splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1