Hannah E. Symington, Nader Soltani, Allan C. Kaastra, David C. Hooker, Darren E. Robinson, Peter H. Sikkema
{"title":"用乙酰草胺除草剂混合物控制玉米中的多种抗除草剂水麻(Amaranthus tuberculatus)。","authors":"Hannah E. Symington, Nader Soltani, Allan C. Kaastra, David C. Hooker, Darren E. Robinson, Peter H. Sikkema","doi":"10.1017/wet.2024.16","DOIUrl":null,"url":null,"abstract":"Waterhemp is a summer annual, broadleaf weed with high fecundity, short seed longevity in the soil, and wide genetic diversity. Populations have evolved resistance to five herbicide modes of action (Groups 2, 5, 9, 14, and 27), which are present across southern Ontario; this has increased the challenge of controlling this competitive weed species in corn, the most important grain crop produced worldwide, and the highest value agronomic crop in Ontario. Acetochlor is a Group 15 soil-applied residual herbicide that has activity on many grass and broadleaf weeds but has yet to be registered in Canada. The objective of this study was to ascertain whether mixtures of acetochlor with flumetsulam, dicamba, atrazine, isoxaflutole/diflufenican, or mesotrione + atrazine applied preemergence would increase the control of multiple herbicide-resistant (MHR) waterhemp in corn. Five field trials were conducted between 2022 and 2023. No corn injury was observed. Acetochlor applied alone controlled MHR waterhemp 97% 12 weeks after application (WAA). All herbicide mixtures controlled MHR waterhemp similarly at ≥98% 12 WAA; there were no differences among herbicide mixtures. Flumetsulam, dicamba, and atrazine provided lower MHR waterhemp control than all other herbicide treatments and did not reduce density or biomass. Acetochlor reduced waterhemp density 98%, while the acetochlor mixtures reduced density similarly at 99 to 100%. This study concludes that the acetochlor mixtures evaluated provide excellent waterhemp control; however, control was not greater than acetochlor alone. Herbicides herbicide mixtures should be used as a best management practice to mitigate the evolution of herbicide resistance.","PeriodicalId":23710,"journal":{"name":"Weed Technology","volume":"30 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control of multiple herbicide-resistant waterhemp (Amaranthus tuberculatus) with acetochlor-based herbicide mixtures in corn\",\"authors\":\"Hannah E. Symington, Nader Soltani, Allan C. Kaastra, David C. Hooker, Darren E. Robinson, Peter H. Sikkema\",\"doi\":\"10.1017/wet.2024.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Waterhemp is a summer annual, broadleaf weed with high fecundity, short seed longevity in the soil, and wide genetic diversity. Populations have evolved resistance to five herbicide modes of action (Groups 2, 5, 9, 14, and 27), which are present across southern Ontario; this has increased the challenge of controlling this competitive weed species in corn, the most important grain crop produced worldwide, and the highest value agronomic crop in Ontario. Acetochlor is a Group 15 soil-applied residual herbicide that has activity on many grass and broadleaf weeds but has yet to be registered in Canada. The objective of this study was to ascertain whether mixtures of acetochlor with flumetsulam, dicamba, atrazine, isoxaflutole/diflufenican, or mesotrione + atrazine applied preemergence would increase the control of multiple herbicide-resistant (MHR) waterhemp in corn. Five field trials were conducted between 2022 and 2023. No corn injury was observed. Acetochlor applied alone controlled MHR waterhemp 97% 12 weeks after application (WAA). All herbicide mixtures controlled MHR waterhemp similarly at ≥98% 12 WAA; there were no differences among herbicide mixtures. Flumetsulam, dicamba, and atrazine provided lower MHR waterhemp control than all other herbicide treatments and did not reduce density or biomass. Acetochlor reduced waterhemp density 98%, while the acetochlor mixtures reduced density similarly at 99 to 100%. This study concludes that the acetochlor mixtures evaluated provide excellent waterhemp control; however, control was not greater than acetochlor alone. Herbicides herbicide mixtures should be used as a best management practice to mitigate the evolution of herbicide resistance.\",\"PeriodicalId\":23710,\"journal\":{\"name\":\"Weed Technology\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Weed Technology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1017/wet.2024.16\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weed Technology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1017/wet.2024.16","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
Control of multiple herbicide-resistant waterhemp (Amaranthus tuberculatus) with acetochlor-based herbicide mixtures in corn
Waterhemp is a summer annual, broadleaf weed with high fecundity, short seed longevity in the soil, and wide genetic diversity. Populations have evolved resistance to five herbicide modes of action (Groups 2, 5, 9, 14, and 27), which are present across southern Ontario; this has increased the challenge of controlling this competitive weed species in corn, the most important grain crop produced worldwide, and the highest value agronomic crop in Ontario. Acetochlor is a Group 15 soil-applied residual herbicide that has activity on many grass and broadleaf weeds but has yet to be registered in Canada. The objective of this study was to ascertain whether mixtures of acetochlor with flumetsulam, dicamba, atrazine, isoxaflutole/diflufenican, or mesotrione + atrazine applied preemergence would increase the control of multiple herbicide-resistant (MHR) waterhemp in corn. Five field trials were conducted between 2022 and 2023. No corn injury was observed. Acetochlor applied alone controlled MHR waterhemp 97% 12 weeks after application (WAA). All herbicide mixtures controlled MHR waterhemp similarly at ≥98% 12 WAA; there were no differences among herbicide mixtures. Flumetsulam, dicamba, and atrazine provided lower MHR waterhemp control than all other herbicide treatments and did not reduce density or biomass. Acetochlor reduced waterhemp density 98%, while the acetochlor mixtures reduced density similarly at 99 to 100%. This study concludes that the acetochlor mixtures evaluated provide excellent waterhemp control; however, control was not greater than acetochlor alone. Herbicides herbicide mixtures should be used as a best management practice to mitigate the evolution of herbicide resistance.
期刊介绍:
Weed Technology publishes original research and scholarship in the form of peer-reviewed articles focused on understanding how weeds are managed.
The journal focuses on:
- Applied aspects concerning the management of weeds in agricultural systems
- Herbicides used to manage undesired vegetation, weed biology and control
- Weed/crop management systems
- Reports of new weed problems
-New technologies for weed management and special articles emphasizing technology transfer to improve weed control
-Articles dealing with plant growth regulators and management of undesired plant growth may also be accepted, provided there is clear relevance to weed science technology, e.g., turfgrass or woody plant management along rights-of-way, vegetation management in forest, aquatic, or other non-crop situations.
-Surveys, education, and extension topics related to weeds will also be considered