迪安-川崎方程的非线性 SPDE 近似的弱误差分析

IF 1.4 3区 数学 Q2 MATHEMATICS, APPLIED Stochastics and Partial Differential Equations-Analysis and Computations Pub Date : 2024-03-15 DOI:10.1007/s40072-024-00324-1
Ana Djurdjevac, Helena Kremp, Nicolas Perkowski
{"title":"迪安-川崎方程的非线性 SPDE 近似的弱误差分析","authors":"Ana Djurdjevac, Helena Kremp, Nicolas Perkowski","doi":"10.1007/s40072-024-00324-1","DOIUrl":null,"url":null,"abstract":"<p>We consider a nonlinear SPDE approximation of the Dean–Kawasaki equation for independent particles. Our approximation satisfies the physical constraints of the particle system, i.e. its solution is a probability measure for all times (preservation of positivity and mass conservation). Using a duality argument, we prove that the weak error between particle system and nonlinear SPDE is of the order <span>\\(N^{-1-1/(d/2+1)}\\log N\\)</span>. Along the way we show well-posedness, a comparison principle, and an entropy estimate for a class of nonlinear regularized Dean–Kawasaki equations with Itô noise.</p>","PeriodicalId":48569,"journal":{"name":"Stochastics and Partial Differential Equations-Analysis and Computations","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak error analysis for a nonlinear SPDE approximation of the Dean–Kawasaki equation\",\"authors\":\"Ana Djurdjevac, Helena Kremp, Nicolas Perkowski\",\"doi\":\"10.1007/s40072-024-00324-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider a nonlinear SPDE approximation of the Dean–Kawasaki equation for independent particles. Our approximation satisfies the physical constraints of the particle system, i.e. its solution is a probability measure for all times (preservation of positivity and mass conservation). Using a duality argument, we prove that the weak error between particle system and nonlinear SPDE is of the order <span>\\\\(N^{-1-1/(d/2+1)}\\\\log N\\\\)</span>. Along the way we show well-posedness, a comparison principle, and an entropy estimate for a class of nonlinear regularized Dean–Kawasaki equations with Itô noise.</p>\",\"PeriodicalId\":48569,\"journal\":{\"name\":\"Stochastics and Partial Differential Equations-Analysis and Computations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics and Partial Differential Equations-Analysis and Computations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40072-024-00324-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Partial Differential Equations-Analysis and Computations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40072-024-00324-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑对独立粒子的迪安-川崎方程进行非线性 SPDE 近似。我们的近似方法满足粒子系统的物理约束,即其解在所有时间内都是一个概率量(保持正向性和质量守恒)。利用对偶论证,我们证明粒子系统与非线性 SPDE 之间的弱误差为 \(N^{-1-1/(d/2+1)}\log N\) 量级。同时,我们还展示了一类具有 Itô 噪声的非线性正则化 Dean-Kawasaki 方程的拟合性、比较原理和熵估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Weak error analysis for a nonlinear SPDE approximation of the Dean–Kawasaki equation

We consider a nonlinear SPDE approximation of the Dean–Kawasaki equation for independent particles. Our approximation satisfies the physical constraints of the particle system, i.e. its solution is a probability measure for all times (preservation of positivity and mass conservation). Using a duality argument, we prove that the weak error between particle system and nonlinear SPDE is of the order \(N^{-1-1/(d/2+1)}\log N\). Along the way we show well-posedness, a comparison principle, and an entropy estimate for a class of nonlinear regularized Dean–Kawasaki equations with Itô noise.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
13.30%
发文量
54
期刊介绍: Stochastics and Partial Differential Equations: Analysis and Computations publishes the highest quality articles presenting significantly new and important developments in the SPDE theory and applications. SPDE is an active interdisciplinary area at the crossroads of stochastic anaylsis, partial differential equations and scientific computing. Statistical physics, fluid dynamics, financial modeling, nonlinear filtering, super-processes, continuum physics and, recently, uncertainty quantification are important contributors to and major users of the theory and practice of SPDEs. The journal is promoting synergetic activities between the SPDE theory, applications, and related large scale computations. The journal also welcomes high quality articles in fields strongly connected to SPDE such as stochastic differential equations in infinite-dimensional state spaces or probabilistic approaches to solving deterministic PDEs.
期刊最新文献
A weighted $$L_q(L_p)$$ -theory for fully degenerate second-order evolution equations with unbounded time-measurable coefficients $$L_p$$ -solvability and Hölder regularity for stochastic time fractional Burgers’ equations driven by multiplicative space-time white noise Temporal fractal nature of linearized Kuramoto–Sivashinsky SPDEs and their gradient in one-to-three dimensions Weak error analysis for a nonlinear SPDE approximation of the Dean–Kawasaki equation Convergence of stratified MCMC sampling of non-reversible dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1