{"title":"混沌间歇中的层流稳定","authors":"Michiru Katayama, Kenji Ikeda, Tetsushi Ueta","doi":"10.1142/s021812742450024x","DOIUrl":null,"url":null,"abstract":"<p>Chaos intermittency is composed of a laminar regime, which exhibits almost periodic motion, and a burst regime, which exhibits chaotic motion; it is known that in chaos intermittency, switching between these regimes occurs irregularly. In the laminar regime of chaos intermittency, the periodic solution before the saddle node bifurcation is closely related to its generation, and its behavior becomes periodic in a short time; the laminar is not, however, a periodic solution, and there are no unstable periodic solutions nearby. Most chaos control methods cannot be applied to the problem of stabilizing a laminar response to a periodic solution since they refer to information about unstable periodic orbits. In this paper, we demonstrate a control method that can be applied to the control target with laminar phase of a dynamical system exhibiting chaos intermittency. This method records the time series of a periodic solution prior to the saddle node bifurcation as a pseudo-periodic orbit and feeds it back to the control target. We report that when this control method is applied to a circuit model, laminar motion can be stabilized to a periodic solution via control inputs of very small magnitude, for which robust control can be obtained.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilization of Laminars in Chaos Intermittency\",\"authors\":\"Michiru Katayama, Kenji Ikeda, Tetsushi Ueta\",\"doi\":\"10.1142/s021812742450024x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Chaos intermittency is composed of a laminar regime, which exhibits almost periodic motion, and a burst regime, which exhibits chaotic motion; it is known that in chaos intermittency, switching between these regimes occurs irregularly. In the laminar regime of chaos intermittency, the periodic solution before the saddle node bifurcation is closely related to its generation, and its behavior becomes periodic in a short time; the laminar is not, however, a periodic solution, and there are no unstable periodic solutions nearby. Most chaos control methods cannot be applied to the problem of stabilizing a laminar response to a periodic solution since they refer to information about unstable periodic orbits. In this paper, we demonstrate a control method that can be applied to the control target with laminar phase of a dynamical system exhibiting chaos intermittency. This method records the time series of a periodic solution prior to the saddle node bifurcation as a pseudo-periodic orbit and feeds it back to the control target. We report that when this control method is applied to a circuit model, laminar motion can be stabilized to a periodic solution via control inputs of very small magnitude, for which robust control can be obtained.</p>\",\"PeriodicalId\":50337,\"journal\":{\"name\":\"International Journal of Bifurcation and Chaos\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bifurcation and Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s021812742450024x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s021812742450024x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Chaos intermittency is composed of a laminar regime, which exhibits almost periodic motion, and a burst regime, which exhibits chaotic motion; it is known that in chaos intermittency, switching between these regimes occurs irregularly. In the laminar regime of chaos intermittency, the periodic solution before the saddle node bifurcation is closely related to its generation, and its behavior becomes periodic in a short time; the laminar is not, however, a periodic solution, and there are no unstable periodic solutions nearby. Most chaos control methods cannot be applied to the problem of stabilizing a laminar response to a periodic solution since they refer to information about unstable periodic orbits. In this paper, we demonstrate a control method that can be applied to the control target with laminar phase of a dynamical system exhibiting chaos intermittency. This method records the time series of a periodic solution prior to the saddle node bifurcation as a pseudo-periodic orbit and feeds it back to the control target. We report that when this control method is applied to a circuit model, laminar motion can be stabilized to a periodic solution via control inputs of very small magnitude, for which robust control can be obtained.
期刊介绍:
The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering.
The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.