{"title":"评估瞬时加热条件下 FGM 圆柱壳的轴对称动态卡穿和热诱导振动","authors":"A. Keibolahi, M. R. Eslami, Y. Kiani","doi":"10.1142/s0219455425500324","DOIUrl":null,"url":null,"abstract":"<p>This paper addresses the investigation of axisymmetric thermally induced vibrations in Functionally Graded Material (FGM) cylindrical shells. It considers temperature-dependent (TD) properties and geometric non-linearity (the von Karman effect). The study systematically solves a transient heat conduction equation using finite differences method and the Crank–Nicolson method. During the heating stages, the evaluation of thermal forces and moments takes place. Equations of motion are derived through the application of Hamilton’s principle. Spatial dependencies are discretized using the generalized Ritz method, while temporal dependencies are approximated using the <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>β</mi></math></span><span></span>-Newmark method with Newton–Raphson linearization. A comparative analysis validates the procedure’s efficiency and precision. Parametric studies explore the influence of parameters, including the temperature-dependency material properties, geometric nonlinearity, and shell’s power-law index, providing valuable insights into FGM shell behavior under thermal shock.</p>","PeriodicalId":54939,"journal":{"name":"International Journal of Structural Stability and Dynamics","volume":"80 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of Axisymmetric Dynamic Snap-Through and Thermally Induced Vibrations in FGM Cylindrical Shells Under Instantaneous Heating\",\"authors\":\"A. Keibolahi, M. R. Eslami, Y. Kiani\",\"doi\":\"10.1142/s0219455425500324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper addresses the investigation of axisymmetric thermally induced vibrations in Functionally Graded Material (FGM) cylindrical shells. It considers temperature-dependent (TD) properties and geometric non-linearity (the von Karman effect). The study systematically solves a transient heat conduction equation using finite differences method and the Crank–Nicolson method. During the heating stages, the evaluation of thermal forces and moments takes place. Equations of motion are derived through the application of Hamilton’s principle. Spatial dependencies are discretized using the generalized Ritz method, while temporal dependencies are approximated using the <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>β</mi></math></span><span></span>-Newmark method with Newton–Raphson linearization. A comparative analysis validates the procedure’s efficiency and precision. Parametric studies explore the influence of parameters, including the temperature-dependency material properties, geometric nonlinearity, and shell’s power-law index, providing valuable insights into FGM shell behavior under thermal shock.</p>\",\"PeriodicalId\":54939,\"journal\":{\"name\":\"International Journal of Structural Stability and Dynamics\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Structural Stability and Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219455425500324\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Structural Stability and Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1142/s0219455425500324","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Assessment of Axisymmetric Dynamic Snap-Through and Thermally Induced Vibrations in FGM Cylindrical Shells Under Instantaneous Heating
This paper addresses the investigation of axisymmetric thermally induced vibrations in Functionally Graded Material (FGM) cylindrical shells. It considers temperature-dependent (TD) properties and geometric non-linearity (the von Karman effect). The study systematically solves a transient heat conduction equation using finite differences method and the Crank–Nicolson method. During the heating stages, the evaluation of thermal forces and moments takes place. Equations of motion are derived through the application of Hamilton’s principle. Spatial dependencies are discretized using the generalized Ritz method, while temporal dependencies are approximated using the -Newmark method with Newton–Raphson linearization. A comparative analysis validates the procedure’s efficiency and precision. Parametric studies explore the influence of parameters, including the temperature-dependency material properties, geometric nonlinearity, and shell’s power-law index, providing valuable insights into FGM shell behavior under thermal shock.
期刊介绍:
The aim of this journal is to provide a unique forum for the publication and rapid dissemination of original research on stability and dynamics of structures. Papers that deal with conventional land-based structures, aerospace structures, marine structures, as well as biostructures and micro- and nano-structures are considered. Papers devoted to all aspects of structural stability and dynamics (both transient and vibration response), ranging from mathematical formulations, novel methods of solutions, to experimental investigations and practical applications in civil, mechanical, aerospace, marine, bio- and nano-engineering will be published.
The important subjects of structural stability and structural dynamics are placed together in this journal because they share somewhat fundamental elements. In recognition of the considerable research interests and recent proliferation of papers in these subjects, it is hoped that the journal may help bring together papers focused on related subjects, including the state-of-the-art surveys, so as to provide a more effective medium for disseminating the latest developments to researchers and engineers.
This journal features a section for technical notes that allows researchers to publish their initial findings or new ideas more speedily. Discussions of papers and concepts will also be published so that researchers can have a vibrant and timely communication with others.