{"title":"利用负刚度和斯托克布里奇阻尼器对超长滞留电缆进行多模式振动控制","authors":"Zhihao Wang, Yang Liu, Hui Gao, Zhipeng Cheng, Hao Wang, Yanwei Xu","doi":"10.1142/s0219455425500014","DOIUrl":null,"url":null,"abstract":"<p>Installing mechanical dampers near the cable anchorage is a commonly used measure for suppressing rain-wind-induced vibrations (RWIVs) of stay cables. However, the high-mode vortex-induced vibrations (VIVs) are still observed on super-long stay cables installed with dampers. To this end, the study presents the combination of a negative stiffness damper (NSD) and Stockbridge dampers (SDs) to simultaneously suppress cable RWIVs and VIVs. In the proposed cable–NSD–SDs system, the NSD is installed near the cable anchorage to suppress cable RWIVs, and the SDs are installed at a higher location to suppress cable VIVs. First, the generalized characteristic equation of the cable–NSD–SDs system is derived for computing the coupled damping effect. Subsequently, a novel design method of an NSD and two SDs for mitigating cable multi-mode vibrations is proposed, and its effectiveness is numerically verified on an ultra-long stay cable of the Sutong Bridge. Finally, the control performance of an NSD and two SDs for the cable under white noise and harmonic excitations is emphatically evaluated and compared. Results indicate that the NSD–SDs system is quite effective for mitigating high-mode vibrations of super-long stay cables. Compared with the cable–NSD system, the cable acceleration response of the cable–NSD–SDs system is reduced by over 35%.</p>","PeriodicalId":54939,"journal":{"name":"International Journal of Structural Stability and Dynamics","volume":"80 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Mode Vibration Control of Super-Long Stay Cables with Negative Stiffness and Stockbridge Dampers\",\"authors\":\"Zhihao Wang, Yang Liu, Hui Gao, Zhipeng Cheng, Hao Wang, Yanwei Xu\",\"doi\":\"10.1142/s0219455425500014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Installing mechanical dampers near the cable anchorage is a commonly used measure for suppressing rain-wind-induced vibrations (RWIVs) of stay cables. However, the high-mode vortex-induced vibrations (VIVs) are still observed on super-long stay cables installed with dampers. To this end, the study presents the combination of a negative stiffness damper (NSD) and Stockbridge dampers (SDs) to simultaneously suppress cable RWIVs and VIVs. In the proposed cable–NSD–SDs system, the NSD is installed near the cable anchorage to suppress cable RWIVs, and the SDs are installed at a higher location to suppress cable VIVs. First, the generalized characteristic equation of the cable–NSD–SDs system is derived for computing the coupled damping effect. Subsequently, a novel design method of an NSD and two SDs for mitigating cable multi-mode vibrations is proposed, and its effectiveness is numerically verified on an ultra-long stay cable of the Sutong Bridge. Finally, the control performance of an NSD and two SDs for the cable under white noise and harmonic excitations is emphatically evaluated and compared. Results indicate that the NSD–SDs system is quite effective for mitigating high-mode vibrations of super-long stay cables. Compared with the cable–NSD system, the cable acceleration response of the cable–NSD–SDs system is reduced by over 35%.</p>\",\"PeriodicalId\":54939,\"journal\":{\"name\":\"International Journal of Structural Stability and Dynamics\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Structural Stability and Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219455425500014\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Structural Stability and Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1142/s0219455425500014","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Multi-Mode Vibration Control of Super-Long Stay Cables with Negative Stiffness and Stockbridge Dampers
Installing mechanical dampers near the cable anchorage is a commonly used measure for suppressing rain-wind-induced vibrations (RWIVs) of stay cables. However, the high-mode vortex-induced vibrations (VIVs) are still observed on super-long stay cables installed with dampers. To this end, the study presents the combination of a negative stiffness damper (NSD) and Stockbridge dampers (SDs) to simultaneously suppress cable RWIVs and VIVs. In the proposed cable–NSD–SDs system, the NSD is installed near the cable anchorage to suppress cable RWIVs, and the SDs are installed at a higher location to suppress cable VIVs. First, the generalized characteristic equation of the cable–NSD–SDs system is derived for computing the coupled damping effect. Subsequently, a novel design method of an NSD and two SDs for mitigating cable multi-mode vibrations is proposed, and its effectiveness is numerically verified on an ultra-long stay cable of the Sutong Bridge. Finally, the control performance of an NSD and two SDs for the cable under white noise and harmonic excitations is emphatically evaluated and compared. Results indicate that the NSD–SDs system is quite effective for mitigating high-mode vibrations of super-long stay cables. Compared with the cable–NSD system, the cable acceleration response of the cable–NSD–SDs system is reduced by over 35%.
期刊介绍:
The aim of this journal is to provide a unique forum for the publication and rapid dissemination of original research on stability and dynamics of structures. Papers that deal with conventional land-based structures, aerospace structures, marine structures, as well as biostructures and micro- and nano-structures are considered. Papers devoted to all aspects of structural stability and dynamics (both transient and vibration response), ranging from mathematical formulations, novel methods of solutions, to experimental investigations and practical applications in civil, mechanical, aerospace, marine, bio- and nano-engineering will be published.
The important subjects of structural stability and structural dynamics are placed together in this journal because they share somewhat fundamental elements. In recognition of the considerable research interests and recent proliferation of papers in these subjects, it is hoped that the journal may help bring together papers focused on related subjects, including the state-of-the-art surveys, so as to provide a more effective medium for disseminating the latest developments to researchers and engineers.
This journal features a section for technical notes that allows researchers to publish their initial findings or new ideas more speedily. Discussions of papers and concepts will also be published so that researchers can have a vibrant and timely communication with others.