Wanli Yan, Yong Liu, Xinfeng Yin, Yang Liu, Yingfei Dong
{"title":"基于迭代重加权 L1/2 正则化和三种优化函数的结构损伤识别方法对比分析","authors":"Wanli Yan, Yong Liu, Xinfeng Yin, Yang Liu, Yingfei Dong","doi":"10.1142/s0219455425500233","DOIUrl":null,"url":null,"abstract":"<p>Previous vibration-based damage detection studies mostly focus on developing a more sensitive optimization function to promote the effectiveness of damage identification. However, a few studies have conducted comparative analyses on the detection performance of different optimization functions. In the study, changes in the frequency and mode shape are applied as the inputs to different optimization functions for damage identification. Three optimization functions are established using the frequency residuals, the combinations of frequency and mode shape residuals, and the modal flexibility residuals, respectively. Considering the sparsity of damage element distribution, an iterative reweighted <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>l</mi></mrow><mrow><mn>1</mn><mo stretchy=\"false\">/</mo><mn>2</mn></mrow></msub></math></span><span></span><span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mstyle><mtext mathvariant=\"normal\">IR</mtext></mstyle><msub><mrow><mi>l</mi></mrow><mrow><mn>1</mn><mo stretchy=\"false\">/</mo><mn>2</mn></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> regularization is added as a norm penalty to the optimization function. A numerical model and an experimental example are applied to assess the performance of distinct optimization functions. The results show that the increase in modal data number cannot significantly improve the detection accuracy when the number meets the basic requirements for identifying damage. The detection error of the optimization function established by combining the frequency and mode shape residuals is 6.65% and 5.18% using the first four and fourteen-order noisy modal data, respectively. Furthermore, the optimization function constructed using the modal flexibility residuals requires more less modal data to identify damage than the other two functions.</p>","PeriodicalId":54939,"journal":{"name":"International Journal of Structural Stability and Dynamics","volume":"13 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Analysis of Structural Damage Identification Methods Based on Iterative Reweighted L1/2 Regularization and Three Optimization Functions\",\"authors\":\"Wanli Yan, Yong Liu, Xinfeng Yin, Yang Liu, Yingfei Dong\",\"doi\":\"10.1142/s0219455425500233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Previous vibration-based damage detection studies mostly focus on developing a more sensitive optimization function to promote the effectiveness of damage identification. However, a few studies have conducted comparative analyses on the detection performance of different optimization functions. In the study, changes in the frequency and mode shape are applied as the inputs to different optimization functions for damage identification. Three optimization functions are established using the frequency residuals, the combinations of frequency and mode shape residuals, and the modal flexibility residuals, respectively. Considering the sparsity of damage element distribution, an iterative reweighted <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>l</mi></mrow><mrow><mn>1</mn><mo stretchy=\\\"false\\\">/</mo><mn>2</mn></mrow></msub></math></span><span></span><span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mstyle><mtext mathvariant=\\\"normal\\\">IR</mtext></mstyle><msub><mrow><mi>l</mi></mrow><mrow><mn>1</mn><mo stretchy=\\\"false\\\">/</mo><mn>2</mn></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> regularization is added as a norm penalty to the optimization function. A numerical model and an experimental example are applied to assess the performance of distinct optimization functions. The results show that the increase in modal data number cannot significantly improve the detection accuracy when the number meets the basic requirements for identifying damage. The detection error of the optimization function established by combining the frequency and mode shape residuals is 6.65% and 5.18% using the first four and fourteen-order noisy modal data, respectively. Furthermore, the optimization function constructed using the modal flexibility residuals requires more less modal data to identify damage than the other two functions.</p>\",\"PeriodicalId\":54939,\"journal\":{\"name\":\"International Journal of Structural Stability and Dynamics\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Structural Stability and Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219455425500233\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Structural Stability and Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1142/s0219455425500233","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Comparative Analysis of Structural Damage Identification Methods Based on Iterative Reweighted L1/2 Regularization and Three Optimization Functions
Previous vibration-based damage detection studies mostly focus on developing a more sensitive optimization function to promote the effectiveness of damage identification. However, a few studies have conducted comparative analyses on the detection performance of different optimization functions. In the study, changes in the frequency and mode shape are applied as the inputs to different optimization functions for damage identification. Three optimization functions are established using the frequency residuals, the combinations of frequency and mode shape residuals, and the modal flexibility residuals, respectively. Considering the sparsity of damage element distribution, an iterative reweighted regularization is added as a norm penalty to the optimization function. A numerical model and an experimental example are applied to assess the performance of distinct optimization functions. The results show that the increase in modal data number cannot significantly improve the detection accuracy when the number meets the basic requirements for identifying damage. The detection error of the optimization function established by combining the frequency and mode shape residuals is 6.65% and 5.18% using the first four and fourteen-order noisy modal data, respectively. Furthermore, the optimization function constructed using the modal flexibility residuals requires more less modal data to identify damage than the other two functions.
期刊介绍:
The aim of this journal is to provide a unique forum for the publication and rapid dissemination of original research on stability and dynamics of structures. Papers that deal with conventional land-based structures, aerospace structures, marine structures, as well as biostructures and micro- and nano-structures are considered. Papers devoted to all aspects of structural stability and dynamics (both transient and vibration response), ranging from mathematical formulations, novel methods of solutions, to experimental investigations and practical applications in civil, mechanical, aerospace, marine, bio- and nano-engineering will be published.
The important subjects of structural stability and structural dynamics are placed together in this journal because they share somewhat fundamental elements. In recognition of the considerable research interests and recent proliferation of papers in these subjects, it is hoped that the journal may help bring together papers focused on related subjects, including the state-of-the-art surveys, so as to provide a more effective medium for disseminating the latest developments to researchers and engineers.
This journal features a section for technical notes that allows researchers to publish their initial findings or new ideas more speedily. Discussions of papers and concepts will also be published so that researchers can have a vibrant and timely communication with others.