Jing Sun, Run Shi, Yang Wu, Yan Lou, Lijuan Nie, Chun Zhang, Yutian Cao, Qianhua Yan, Lifang Ye, Shu Zhang, Xuanbin Wang, Qibiao Wu, Xuehua Jiao, Jiangyi Yu, Zhuyuan Fang, Xiqiao Zhou
{"title":"整合转录组分析和多种机器学习方法,确定非酒精性脂肪肝进展特异性枢纽基因,揭示独特的基因组模式和可操作的靶点","authors":"Jing Sun, Run Shi, Yang Wu, Yan Lou, Lijuan Nie, Chun Zhang, Yutian Cao, Qianhua Yan, Lifang Ye, Shu Zhang, Xuanbin Wang, Qibiao Wu, Xuehua Jiao, Jiangyi Yu, Zhuyuan Fang, Xiqiao Zhou","doi":"10.1186/s40537-024-00899-5","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background</h3><p>Nonalcoholic fatty liver disease (NAFLD) is a leading public health problem worldwide. Approximately one fourth of patients with nonalcoholic fatty liver (NAFL) progress to nonalcoholic steatohepatitis (NASH), an advanced stage of NAFLD. Hence, there is an urgent need to make a better understanding of NAFLD heterogeneity and facilitate personalized management of high-risk NAFLD patients who may benefit from more intensive surveillance and preventive intervene.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>In this study, a series of bioinformatic methods were performed to identify NAFLD progression-specific pathways and genes, and three machine learning approaches were combined to construct a risk-stratification gene signature to quantify risk assessment. In addition, bulk RNA-seq, single-cell RNA-seq (scRNA-seq) transcriptome profiling data and whole-exome sequencing (WES) data were comprehensively analyzed to reveal the genomic alterations and altered pathways between distinct molecular subtypes.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Two distinct subtypes of NAFL were identified with the NAFLD progression-specific genes, and one subtype has a high similarity of the inflammatory pattern and fibrotic potential with NASH. The established risk-stratification gene signature could discriminate advanced samples from overall NAFLD. COL1A2, one key gene closely related to NAFLD progression, is specifically expressed in fibroblasts involved in hepatocellular carcinoma (HCC), and significantly correlated with EMT and angiogenesis in pan-cancer. Moreover, the β-catenin/COL1A2 axis might play a critical role in fibrosis severity and inflammatory response during NAFLD-HCC progression.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>In summary, our study provided evidence for the necessity of molecular classification and established a risk-stratification gene signature to quantify risk assessment of NAFLD, aiming to identify different risk subsets and to guide personalized treatment.</p>","PeriodicalId":15158,"journal":{"name":"Journal of Big Data","volume":"2 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of transcriptomic analysis and multiple machine learning approaches identifies NAFLD progression-specific hub genes to reveal distinct genomic patterns and actionable targets\",\"authors\":\"Jing Sun, Run Shi, Yang Wu, Yan Lou, Lijuan Nie, Chun Zhang, Yutian Cao, Qianhua Yan, Lifang Ye, Shu Zhang, Xuanbin Wang, Qibiao Wu, Xuehua Jiao, Jiangyi Yu, Zhuyuan Fang, Xiqiao Zhou\",\"doi\":\"10.1186/s40537-024-00899-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Background</h3><p>Nonalcoholic fatty liver disease (NAFLD) is a leading public health problem worldwide. Approximately one fourth of patients with nonalcoholic fatty liver (NAFL) progress to nonalcoholic steatohepatitis (NASH), an advanced stage of NAFLD. Hence, there is an urgent need to make a better understanding of NAFLD heterogeneity and facilitate personalized management of high-risk NAFLD patients who may benefit from more intensive surveillance and preventive intervene.</p><h3 data-test=\\\"abstract-sub-heading\\\">Methods</h3><p>In this study, a series of bioinformatic methods were performed to identify NAFLD progression-specific pathways and genes, and three machine learning approaches were combined to construct a risk-stratification gene signature to quantify risk assessment. In addition, bulk RNA-seq, single-cell RNA-seq (scRNA-seq) transcriptome profiling data and whole-exome sequencing (WES) data were comprehensively analyzed to reveal the genomic alterations and altered pathways between distinct molecular subtypes.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results</h3><p>Two distinct subtypes of NAFL were identified with the NAFLD progression-specific genes, and one subtype has a high similarity of the inflammatory pattern and fibrotic potential with NASH. The established risk-stratification gene signature could discriminate advanced samples from overall NAFLD. COL1A2, one key gene closely related to NAFLD progression, is specifically expressed in fibroblasts involved in hepatocellular carcinoma (HCC), and significantly correlated with EMT and angiogenesis in pan-cancer. Moreover, the β-catenin/COL1A2 axis might play a critical role in fibrosis severity and inflammatory response during NAFLD-HCC progression.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusion</h3><p>In summary, our study provided evidence for the necessity of molecular classification and established a risk-stratification gene signature to quantify risk assessment of NAFLD, aiming to identify different risk subsets and to guide personalized treatment.</p>\",\"PeriodicalId\":15158,\"journal\":{\"name\":\"Journal of Big Data\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s40537-024-00899-5\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s40537-024-00899-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Integration of transcriptomic analysis and multiple machine learning approaches identifies NAFLD progression-specific hub genes to reveal distinct genomic patterns and actionable targets
Background
Nonalcoholic fatty liver disease (NAFLD) is a leading public health problem worldwide. Approximately one fourth of patients with nonalcoholic fatty liver (NAFL) progress to nonalcoholic steatohepatitis (NASH), an advanced stage of NAFLD. Hence, there is an urgent need to make a better understanding of NAFLD heterogeneity and facilitate personalized management of high-risk NAFLD patients who may benefit from more intensive surveillance and preventive intervene.
Methods
In this study, a series of bioinformatic methods were performed to identify NAFLD progression-specific pathways and genes, and three machine learning approaches were combined to construct a risk-stratification gene signature to quantify risk assessment. In addition, bulk RNA-seq, single-cell RNA-seq (scRNA-seq) transcriptome profiling data and whole-exome sequencing (WES) data were comprehensively analyzed to reveal the genomic alterations and altered pathways between distinct molecular subtypes.
Results
Two distinct subtypes of NAFL were identified with the NAFLD progression-specific genes, and one subtype has a high similarity of the inflammatory pattern and fibrotic potential with NASH. The established risk-stratification gene signature could discriminate advanced samples from overall NAFLD. COL1A2, one key gene closely related to NAFLD progression, is specifically expressed in fibroblasts involved in hepatocellular carcinoma (HCC), and significantly correlated with EMT and angiogenesis in pan-cancer. Moreover, the β-catenin/COL1A2 axis might play a critical role in fibrosis severity and inflammatory response during NAFLD-HCC progression.
Conclusion
In summary, our study provided evidence for the necessity of molecular classification and established a risk-stratification gene signature to quantify risk assessment of NAFLD, aiming to identify different risk subsets and to guide personalized treatment.
期刊介绍:
The Journal of Big Data publishes high-quality, scholarly research papers, methodologies, and case studies covering a broad spectrum of topics, from big data analytics to data-intensive computing and all applications of big data research. It addresses challenges facing big data today and in the future, including data capture and storage, search, sharing, analytics, technologies, visualization, architectures, data mining, machine learning, cloud computing, distributed systems, and scalable storage. The journal serves as a seminal source of innovative material for academic researchers and practitioners alike.