利用响应面方法优化有机纳米制备的镍金属复合物,提高抗氧化和抗癌活性

IF 3.4 Q2 PHARMACOLOGY & PHARMACY Future Journal of Pharmaceutical Sciences Pub Date : 2024-03-18 DOI:10.1186/s43094-024-00618-0
Swathi Aleti, Savita Belwal, Mukunda Vani Medala
{"title":"利用响应面方法优化有机纳米制备的镍金属复合物,提高抗氧化和抗癌活性","authors":"Swathi Aleti,&nbsp;Savita Belwal,&nbsp;Mukunda Vani Medala","doi":"10.1186/s43094-024-00618-0","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Researchers, prompted by the toxicity and side effects associated with cisplatin, are exploring alternative approaches for developing transition metal-based anticancer agents. Employing a green biochemical approach, we transformed Nickel pyridine dicarboxylic acid compounds into the nanoscale using the aqueous extract of Macrotyloma uniflorum (horse gram).</p><h3>Results</h3><p>Characterization of the biosynthesized nanoparticles involved electronic and IR spectroscopy. A scanning electron microscope revealed a predominant spherical shape for most Nickel nanoparticles (Ni-NPs), with XRD patterns indicating particle sizes ranging from approximately 30–150 nm. The nanoparticles were evaluated for their free radical scavenging efficiency and in vitro anti-malignant properties against HeLa and A549 cancer cell lines. Numerical optimization of the DPPH and MTT assays was conducted using response surface methodology (RSM), focusing on the effects of 3,4-pyridine dicarboxylic acid (ML<sub>1</sub>), 2,4-pyridine dicarboxylic acid (ML<sub>2</sub>), nickel nanoparticles concentration, and temperature. In this investigation, the incorporation of Horse Gram seed extract (Macrotyloma uniflorum) has unveiled its abundance in phenolic and flavonoid compounds, widely acknowledged for their robust antioxidant activity in the existing literature.</p><h3>Conclusion</h3><p>The present study highlights the potential for refining the bio-toxicity and biochemical attributes of Ni-NPs to pave the way for a new generation of versatile anticancer agents with clinically established efficacy. Notably, the anticipated data closely corresponds with experimental outcomes, reinforcing the trustworthiness and validity of the RSM model for examining anticancer and antioxidant properties in this context. ML<sub>2</sub> exhibited heightened antioxidant and anticancer activities in comparison to ML<sub>1</sub> nanoparticles.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":577,"journal":{"name":"Future Journal of Pharmaceutical Sciences","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://fjps.springeropen.com/counter/pdf/10.1186/s43094-024-00618-0","citationCount":"0","resultStr":"{\"title\":\"Optimizing organically nano-fabricated Ni metal complexes for enhanced antioxidant and anticancer activity using response surface methodology\",\"authors\":\"Swathi Aleti,&nbsp;Savita Belwal,&nbsp;Mukunda Vani Medala\",\"doi\":\"10.1186/s43094-024-00618-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Researchers, prompted by the toxicity and side effects associated with cisplatin, are exploring alternative approaches for developing transition metal-based anticancer agents. Employing a green biochemical approach, we transformed Nickel pyridine dicarboxylic acid compounds into the nanoscale using the aqueous extract of Macrotyloma uniflorum (horse gram).</p><h3>Results</h3><p>Characterization of the biosynthesized nanoparticles involved electronic and IR spectroscopy. A scanning electron microscope revealed a predominant spherical shape for most Nickel nanoparticles (Ni-NPs), with XRD patterns indicating particle sizes ranging from approximately 30–150 nm. The nanoparticles were evaluated for their free radical scavenging efficiency and in vitro anti-malignant properties against HeLa and A549 cancer cell lines. Numerical optimization of the DPPH and MTT assays was conducted using response surface methodology (RSM), focusing on the effects of 3,4-pyridine dicarboxylic acid (ML<sub>1</sub>), 2,4-pyridine dicarboxylic acid (ML<sub>2</sub>), nickel nanoparticles concentration, and temperature. In this investigation, the incorporation of Horse Gram seed extract (Macrotyloma uniflorum) has unveiled its abundance in phenolic and flavonoid compounds, widely acknowledged for their robust antioxidant activity in the existing literature.</p><h3>Conclusion</h3><p>The present study highlights the potential for refining the bio-toxicity and biochemical attributes of Ni-NPs to pave the way for a new generation of versatile anticancer agents with clinically established efficacy. Notably, the anticipated data closely corresponds with experimental outcomes, reinforcing the trustworthiness and validity of the RSM model for examining anticancer and antioxidant properties in this context. ML<sub>2</sub> exhibited heightened antioxidant and anticancer activities in comparison to ML<sub>1</sub> nanoparticles.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":577,\"journal\":{\"name\":\"Future Journal of Pharmaceutical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://fjps.springeropen.com/counter/pdf/10.1186/s43094-024-00618-0\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Journal of Pharmaceutical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s43094-024-00618-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Journal of Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s43094-024-00618-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

由于顺铂的毒性和副作用,研究人员正在探索开发过渡金属抗癌剂的替代方法。我们采用绿色生化方法,利用马钱子(Macrotyloma uniflorum)的水提取物将镍吡啶二羧酸化合物转化为纳米级物质。生物合成纳米粒子的表征涉及电子和红外光谱。扫描电子显微镜显示,大多数镍纳米颗粒(Ni-NPs)呈球形,XRD 图谱显示颗粒大小约为 30-150 纳米。对这些纳米粒子的自由基清除效率以及针对 HeLa 和 A549 癌细胞系的体外抗恶性肿瘤特性进行了评估。采用响应面方法(RSM)对 DPPH 和 MTT 试验进行了数值优化,重点研究了 3,4-吡啶二羧酸(ML1)、2,4-吡啶二羧酸(ML2)、纳米镍粒子浓度和温度的影响。在这项研究中,马革兰种子提取物(Macrotyloma uniflorum)揭示了其丰富的酚类和类黄酮化合物,这些化合物在现有文献中被广泛认为具有强大的抗氧化活性。本研究强调了改进 Ni-NPs 的生物毒性和生化属性的潜力,为开发新一代具有临床疗效的多功能抗癌剂铺平了道路。值得注意的是,预期数据与实验结果密切吻合,这加强了 RSM 模型在研究抗癌和抗氧化特性方面的可信度和有效性。与 ML1 纳米粒子相比,ML2 表现出更强的抗氧化和抗癌活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing organically nano-fabricated Ni metal complexes for enhanced antioxidant and anticancer activity using response surface methodology

Background

Researchers, prompted by the toxicity and side effects associated with cisplatin, are exploring alternative approaches for developing transition metal-based anticancer agents. Employing a green biochemical approach, we transformed Nickel pyridine dicarboxylic acid compounds into the nanoscale using the aqueous extract of Macrotyloma uniflorum (horse gram).

Results

Characterization of the biosynthesized nanoparticles involved electronic and IR spectroscopy. A scanning electron microscope revealed a predominant spherical shape for most Nickel nanoparticles (Ni-NPs), with XRD patterns indicating particle sizes ranging from approximately 30–150 nm. The nanoparticles were evaluated for their free radical scavenging efficiency and in vitro anti-malignant properties against HeLa and A549 cancer cell lines. Numerical optimization of the DPPH and MTT assays was conducted using response surface methodology (RSM), focusing on the effects of 3,4-pyridine dicarboxylic acid (ML1), 2,4-pyridine dicarboxylic acid (ML2), nickel nanoparticles concentration, and temperature. In this investigation, the incorporation of Horse Gram seed extract (Macrotyloma uniflorum) has unveiled its abundance in phenolic and flavonoid compounds, widely acknowledged for their robust antioxidant activity in the existing literature.

Conclusion

The present study highlights the potential for refining the bio-toxicity and biochemical attributes of Ni-NPs to pave the way for a new generation of versatile anticancer agents with clinically established efficacy. Notably, the anticipated data closely corresponds with experimental outcomes, reinforcing the trustworthiness and validity of the RSM model for examining anticancer and antioxidant properties in this context. ML2 exhibited heightened antioxidant and anticancer activities in comparison to ML1 nanoparticles.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
44
审稿时长
23 weeks
期刊介绍: Future Journal of Pharmaceutical Sciences (FJPS) is the official journal of the Future University in Egypt. It is a peer-reviewed, open access journal which publishes original research articles, review articles and case studies on all aspects of pharmaceutical sciences and technologies, pharmacy practice and related clinical aspects, and pharmacy education. The journal publishes articles covering developments in drug absorption and metabolism, pharmacokinetics and dynamics, drug delivery systems, drug targeting and nano-technology. It also covers development of new systems, methods and techniques in pharmacy education and practice. The scope of the journal also extends to cover advancements in toxicology, cell and molecular biology, biomedical research, clinical and pharmaceutical microbiology, pharmaceutical biotechnology, medicinal chemistry, phytochemistry and nutraceuticals.
期刊最新文献
Cubosomes: evolving platform for intranasal drug delivery of neurotherapeutics Carbapenem-resistant Acinetobacter baumannii infections among diabetic and non-diabetic patients and possible effective combination treatments Adenocarcinoma of unknown primary with TP53 gene polymorphism: a rare case report with literature review Design, synthesis and evaluation of new methyl piperazine derivatives as anticancer agents Solid self-nanoemulsifying drug delivery systems of nimodipine: development and evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1