{"title":"尼龙 7,10 和 10,7 作为奇偶异构和偶偶异构聚酰胺的非等温结晶和热降解研究","authors":"Matteo Arioli , Lourdes Franco , Jordi Puiggalí","doi":"10.1016/j.tca.2024.179721","DOIUrl":null,"url":null,"abstract":"<div><p>Aliphatic polyamides (nylons) show a remarkable variability in terms of crystallographic structures, polymorphic transitions and crystal morphology despite all polymers of this family have a simple constitution that is based on amide groups and polymethylene segments. Nylons derived from diamines and dicarboxylic acids having different parity (e.g., even or odd) have peculiar characteristics due to the difficulty of establishing an optimal hydrogen-bonding geometry when molecular chains adopt a typical all trans conformation. In this work, two isomeric odd-even (nylon 7,10) and even-odd (nylon 10,7) polyamides with the same methylene/amide ratio have been studied. Specifically, crystallization kinetics have been evaluated from calorimetric data, while thermal degradation mechanisms from thermogravimetric analysis. Classical methods (e.g., Avrami) together with isoconversional analyses have been considered for crystallization studies, being found significant differences between both nylons in terms of nucleation and activation energies. The isoconversional analyses of the non-isothermal crystallization allowed to determine the temperature dependence of both the crystal growth and the overall crystallization rate that points out the slower crystallization process of nylon 10,7. Isoconversional methods (integral and differential) were applied to evaluate thermal degradation. The mechanism was similar for both nylons (e.g., A<sub>3/2</sub> and A<sub>1.8</sub> for nylons 7,10 and 10,7, respectively), although a remarkable difference was determined for the corresponding activation energies (175 and 210 kJ/mol for nylons 7,10 and 10,7, respectively).</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0040603124000601/pdfft?md5=413976788f8a7c5882930b19ec5963a0&pid=1-s2.0-S0040603124000601-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Non-isothermal crystallization and thermal degradation studies on nylons 7,10 and 10,7 as isomeric odd-even and even-odd polyamides\",\"authors\":\"Matteo Arioli , Lourdes Franco , Jordi Puiggalí\",\"doi\":\"10.1016/j.tca.2024.179721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aliphatic polyamides (nylons) show a remarkable variability in terms of crystallographic structures, polymorphic transitions and crystal morphology despite all polymers of this family have a simple constitution that is based on amide groups and polymethylene segments. Nylons derived from diamines and dicarboxylic acids having different parity (e.g., even or odd) have peculiar characteristics due to the difficulty of establishing an optimal hydrogen-bonding geometry when molecular chains adopt a typical all trans conformation. In this work, two isomeric odd-even (nylon 7,10) and even-odd (nylon 10,7) polyamides with the same methylene/amide ratio have been studied. Specifically, crystallization kinetics have been evaluated from calorimetric data, while thermal degradation mechanisms from thermogravimetric analysis. Classical methods (e.g., Avrami) together with isoconversional analyses have been considered for crystallization studies, being found significant differences between both nylons in terms of nucleation and activation energies. The isoconversional analyses of the non-isothermal crystallization allowed to determine the temperature dependence of both the crystal growth and the overall crystallization rate that points out the slower crystallization process of nylon 10,7. Isoconversional methods (integral and differential) were applied to evaluate thermal degradation. The mechanism was similar for both nylons (e.g., A<sub>3/2</sub> and A<sub>1.8</sub> for nylons 7,10 and 10,7, respectively), although a remarkable difference was determined for the corresponding activation energies (175 and 210 kJ/mol for nylons 7,10 and 10,7, respectively).</p></div>\",\"PeriodicalId\":23058,\"journal\":{\"name\":\"Thermochimica Acta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0040603124000601/pdfft?md5=413976788f8a7c5882930b19ec5963a0&pid=1-s2.0-S0040603124000601-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermochimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040603124000601\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermochimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040603124000601","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Non-isothermal crystallization and thermal degradation studies on nylons 7,10 and 10,7 as isomeric odd-even and even-odd polyamides
Aliphatic polyamides (nylons) show a remarkable variability in terms of crystallographic structures, polymorphic transitions and crystal morphology despite all polymers of this family have a simple constitution that is based on amide groups and polymethylene segments. Nylons derived from diamines and dicarboxylic acids having different parity (e.g., even or odd) have peculiar characteristics due to the difficulty of establishing an optimal hydrogen-bonding geometry when molecular chains adopt a typical all trans conformation. In this work, two isomeric odd-even (nylon 7,10) and even-odd (nylon 10,7) polyamides with the same methylene/amide ratio have been studied. Specifically, crystallization kinetics have been evaluated from calorimetric data, while thermal degradation mechanisms from thermogravimetric analysis. Classical methods (e.g., Avrami) together with isoconversional analyses have been considered for crystallization studies, being found significant differences between both nylons in terms of nucleation and activation energies. The isoconversional analyses of the non-isothermal crystallization allowed to determine the temperature dependence of both the crystal growth and the overall crystallization rate that points out the slower crystallization process of nylon 10,7. Isoconversional methods (integral and differential) were applied to evaluate thermal degradation. The mechanism was similar for both nylons (e.g., A3/2 and A1.8 for nylons 7,10 and 10,7, respectively), although a remarkable difference was determined for the corresponding activation energies (175 and 210 kJ/mol for nylons 7,10 and 10,7, respectively).
期刊介绍:
Thermochimica Acta publishes original research contributions covering all aspects of thermoanalytical and calorimetric methods and their application to experimental chemistry, physics, biology and engineering. The journal aims to span the whole range from fundamental research to practical application.
The journal focuses on the research that advances physical and analytical science of thermal phenomena. Therefore, the manuscripts are expected to provide important insights into the thermal phenomena studied or to propose significant improvements of analytical or computational techniques employed in thermal studies. Manuscripts that report the results of routine thermal measurements are not suitable for publication in Thermochimica Acta.
The journal particularly welcomes papers from newly emerging areas as well as from the traditional strength areas:
- New and improved instrumentation and methods
- Thermal properties and behavior of materials
- Kinetics of thermally stimulated processes