Stafford Rohtehrá:kwas Maracle , Orianne Tournayre , Matthew J.S. Windle , Emily Cormier , Kate Schwartz , Mackenzie Wylie-Arbic , Evan Rundle , Mary Ann Perron , Abraham Francis , Stephen C. Lougheed
{"title":"近岸鱼类多样性随采样方法和人类干扰而变化:圣劳伦斯河上游 eDNA 代谢标定与围网捕捞的比较","authors":"Stafford Rohtehrá:kwas Maracle , Orianne Tournayre , Matthew J.S. Windle , Emily Cormier , Kate Schwartz , Mackenzie Wylie-Arbic , Evan Rundle , Mary Ann Perron , Abraham Francis , Stephen C. Lougheed","doi":"10.1016/j.jglr.2024.102317","DOIUrl":null,"url":null,"abstract":"<div><p>Aquatic ecosystems are deteriorating, with the most impacted species and populations having insufficient data to inform conservation and management. Monitoring aquatic biodiversity and evaluating anthropogenic impacts typically rely on time-consuming, logistically challenging, and invasive methods (e.g., seining, trawling or electrofishing). Environmental DNA (eDNA) methods have been touted as an important advancement, especially in fish biodiversity assessment. We compare eDNA metabarcoding and seining methods along a 350 km section of the Upper St. Lawrence River (Canada) for: i) mapping the distribution of invasive and threatened fish species, ii) describing species richness and fish community structure, and iii) assessing the effect of habitat type and anthropogenic degradation of riparian zones on fish community composition and richness. eDNA detected more fish species (n = 67) than seining (n = 38) and revealed higher fish diversity in samples adjacent to intact, natural riparian zones. Fish assemblages were influenced by habitat type according to analyses using eDNA, while no effect of any environmental predictor on fish community composition was found using seining. Altogether, our results support eDNA metabarcoding as a powerful, complementary tool in fish monitoring and testing for the impacts of anthropogenic disturbances.</p></div>","PeriodicalId":54818,"journal":{"name":"Journal of Great Lakes Research","volume":"50 3","pages":"Article 102317"},"PeriodicalIF":2.4000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0380133024000480/pdfft?md5=f24e8c45eb1d377287d4cf110dc6d63c&pid=1-s2.0-S0380133024000480-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Nearshore fish diversity changes with sampling method and human disturbance: Comparing eDNA metabarcoding and seine netting along the Upper St. Lawrence River\",\"authors\":\"Stafford Rohtehrá:kwas Maracle , Orianne Tournayre , Matthew J.S. Windle , Emily Cormier , Kate Schwartz , Mackenzie Wylie-Arbic , Evan Rundle , Mary Ann Perron , Abraham Francis , Stephen C. Lougheed\",\"doi\":\"10.1016/j.jglr.2024.102317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aquatic ecosystems are deteriorating, with the most impacted species and populations having insufficient data to inform conservation and management. Monitoring aquatic biodiversity and evaluating anthropogenic impacts typically rely on time-consuming, logistically challenging, and invasive methods (e.g., seining, trawling or electrofishing). Environmental DNA (eDNA) methods have been touted as an important advancement, especially in fish biodiversity assessment. We compare eDNA metabarcoding and seining methods along a 350 km section of the Upper St. Lawrence River (Canada) for: i) mapping the distribution of invasive and threatened fish species, ii) describing species richness and fish community structure, and iii) assessing the effect of habitat type and anthropogenic degradation of riparian zones on fish community composition and richness. eDNA detected more fish species (n = 67) than seining (n = 38) and revealed higher fish diversity in samples adjacent to intact, natural riparian zones. Fish assemblages were influenced by habitat type according to analyses using eDNA, while no effect of any environmental predictor on fish community composition was found using seining. Altogether, our results support eDNA metabarcoding as a powerful, complementary tool in fish monitoring and testing for the impacts of anthropogenic disturbances.</p></div>\",\"PeriodicalId\":54818,\"journal\":{\"name\":\"Journal of Great Lakes Research\",\"volume\":\"50 3\",\"pages\":\"Article 102317\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0380133024000480/pdfft?md5=f24e8c45eb1d377287d4cf110dc6d63c&pid=1-s2.0-S0380133024000480-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Great Lakes Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0380133024000480\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Great Lakes Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0380133024000480","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Nearshore fish diversity changes with sampling method and human disturbance: Comparing eDNA metabarcoding and seine netting along the Upper St. Lawrence River
Aquatic ecosystems are deteriorating, with the most impacted species and populations having insufficient data to inform conservation and management. Monitoring aquatic biodiversity and evaluating anthropogenic impacts typically rely on time-consuming, logistically challenging, and invasive methods (e.g., seining, trawling or electrofishing). Environmental DNA (eDNA) methods have been touted as an important advancement, especially in fish biodiversity assessment. We compare eDNA metabarcoding and seining methods along a 350 km section of the Upper St. Lawrence River (Canada) for: i) mapping the distribution of invasive and threatened fish species, ii) describing species richness and fish community structure, and iii) assessing the effect of habitat type and anthropogenic degradation of riparian zones on fish community composition and richness. eDNA detected more fish species (n = 67) than seining (n = 38) and revealed higher fish diversity in samples adjacent to intact, natural riparian zones. Fish assemblages were influenced by habitat type according to analyses using eDNA, while no effect of any environmental predictor on fish community composition was found using seining. Altogether, our results support eDNA metabarcoding as a powerful, complementary tool in fish monitoring and testing for the impacts of anthropogenic disturbances.
期刊介绍:
Published six times per year, the Journal of Great Lakes Research is multidisciplinary in its coverage, publishing manuscripts on a wide range of theoretical and applied topics in the natural science fields of biology, chemistry, physics, geology, as well as social sciences of the large lakes of the world and their watersheds. Large lakes generally are considered as those lakes which have a mean surface area of >500 km2 (see Herdendorf, C.E. 1982. Large lakes of the world. J. Great Lakes Res. 8:379-412, for examples), although smaller lakes may be considered, especially if they are very deep. We also welcome contributions on saline lakes and research on estuarine waters where the results have application to large lakes.