Daihai He , Yael Artzy-Randrup , Salihu S. Musa , Tiago Gräf , Felipe Naveca , Lewi Stone
{"title":"巴西玛瑙斯 COVID-19 意外动态模型","authors":"Daihai He , Yael Artzy-Randrup , Salihu S. Musa , Tiago Gräf , Felipe Naveca , Lewi Stone","doi":"10.1016/j.idm.2024.02.012","DOIUrl":null,"url":null,"abstract":"<div><p>In late March 2020, SARS-CoV-2 arrived in Manaus, Brazil, and rapidly developed into a large-scale epidemic that collapsed the local health system and resulted in extreme death rates. Several key studies reported that ∼76% of residents of Manaus were infected (attack rate AR≃76%) by October 2020, suggesting protective herd immunity had been reached. Despite this, an unexpected second wave of COVID-19 struck again in November and proved to be larger than the first, creating a catastrophe for the unprepared population. It has been suggested that this could be possible if the second wave was driven by reinfections. However, it is widely reported that reinfections were at a low rate (before the emergence of Omicron), and reinfections tend to be mild. Here, we use novel methods to model the epidemic from mortality data without considering reinfection-caused deaths and evaluate the impact of interventions to explain why the second wave appeared. The method fits a “flexible” reproductive number <span><math><mrow><msub><mi>R</mi><mn>0</mn></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> that changes over the epidemic, and it is demonstrated that the method can successfully reconstruct <span><math><mrow><msub><mi>R</mi><mn>0</mn></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> from simulated data. For Manaus, the method finds AR≃34% by October 2020 for the first wave, which is far less than required for herd immunity yet in-line with seroprevalence estimates. The work is complemented by a two-strain model. Using genomic data, the model estimates transmissibility of the new P.1 virus lineage as 1.9 times higher than that of the non-P.1. Moreover, an age class model variant that considers the high mortality rates of older adults show very similar results. These models thus provide a reasonable explanation for the two-wave dynamics in Manaus without the need to rely on large reinfection rates, which until now have only been found in negligible to moderate numbers in recent surveillance efforts.</p></div>","PeriodicalId":36831,"journal":{"name":"Infectious Disease Modelling","volume":null,"pages":null},"PeriodicalIF":8.8000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468042724000320/pdfft?md5=39ceee34ad7cf572da2f7fe3f975291c&pid=1-s2.0-S2468042724000320-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Modelling the unexpected dynamics of COVID-19 in Manaus, Brazil\",\"authors\":\"Daihai He , Yael Artzy-Randrup , Salihu S. Musa , Tiago Gräf , Felipe Naveca , Lewi Stone\",\"doi\":\"10.1016/j.idm.2024.02.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In late March 2020, SARS-CoV-2 arrived in Manaus, Brazil, and rapidly developed into a large-scale epidemic that collapsed the local health system and resulted in extreme death rates. Several key studies reported that ∼76% of residents of Manaus were infected (attack rate AR≃76%) by October 2020, suggesting protective herd immunity had been reached. Despite this, an unexpected second wave of COVID-19 struck again in November and proved to be larger than the first, creating a catastrophe for the unprepared population. It has been suggested that this could be possible if the second wave was driven by reinfections. However, it is widely reported that reinfections were at a low rate (before the emergence of Omicron), and reinfections tend to be mild. Here, we use novel methods to model the epidemic from mortality data without considering reinfection-caused deaths and evaluate the impact of interventions to explain why the second wave appeared. The method fits a “flexible” reproductive number <span><math><mrow><msub><mi>R</mi><mn>0</mn></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> that changes over the epidemic, and it is demonstrated that the method can successfully reconstruct <span><math><mrow><msub><mi>R</mi><mn>0</mn></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> from simulated data. For Manaus, the method finds AR≃34% by October 2020 for the first wave, which is far less than required for herd immunity yet in-line with seroprevalence estimates. The work is complemented by a two-strain model. Using genomic data, the model estimates transmissibility of the new P.1 virus lineage as 1.9 times higher than that of the non-P.1. Moreover, an age class model variant that considers the high mortality rates of older adults show very similar results. These models thus provide a reasonable explanation for the two-wave dynamics in Manaus without the need to rely on large reinfection rates, which until now have only been found in negligible to moderate numbers in recent surveillance efforts.</p></div>\",\"PeriodicalId\":36831,\"journal\":{\"name\":\"Infectious Disease Modelling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.8000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468042724000320/pdfft?md5=39ceee34ad7cf572da2f7fe3f975291c&pid=1-s2.0-S2468042724000320-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infectious Disease Modelling\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468042724000320\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infectious Disease Modelling","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468042724000320","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Modelling the unexpected dynamics of COVID-19 in Manaus, Brazil
In late March 2020, SARS-CoV-2 arrived in Manaus, Brazil, and rapidly developed into a large-scale epidemic that collapsed the local health system and resulted in extreme death rates. Several key studies reported that ∼76% of residents of Manaus were infected (attack rate AR≃76%) by October 2020, suggesting protective herd immunity had been reached. Despite this, an unexpected second wave of COVID-19 struck again in November and proved to be larger than the first, creating a catastrophe for the unprepared population. It has been suggested that this could be possible if the second wave was driven by reinfections. However, it is widely reported that reinfections were at a low rate (before the emergence of Omicron), and reinfections tend to be mild. Here, we use novel methods to model the epidemic from mortality data without considering reinfection-caused deaths and evaluate the impact of interventions to explain why the second wave appeared. The method fits a “flexible” reproductive number that changes over the epidemic, and it is demonstrated that the method can successfully reconstruct from simulated data. For Manaus, the method finds AR≃34% by October 2020 for the first wave, which is far less than required for herd immunity yet in-line with seroprevalence estimates. The work is complemented by a two-strain model. Using genomic data, the model estimates transmissibility of the new P.1 virus lineage as 1.9 times higher than that of the non-P.1. Moreover, an age class model variant that considers the high mortality rates of older adults show very similar results. These models thus provide a reasonable explanation for the two-wave dynamics in Manaus without the need to rely on large reinfection rates, which until now have only been found in negligible to moderate numbers in recent surveillance efforts.
期刊介绍:
Infectious Disease Modelling is an open access journal that undergoes peer-review. Its main objective is to facilitate research that combines mathematical modelling, retrieval and analysis of infection disease data, and public health decision support. The journal actively encourages original research that improves this interface, as well as review articles that highlight innovative methodologies relevant to data collection, informatics, and policy making in the field of public health.