特约编辑 基于图形的方法和应用的新趋势和新进展

IF 5.1 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Emerging Topics in Computing Pub Date : 2024-03-18 DOI:10.1109/TETC.2024.3374581
Alessandro D'Amelio;Jianyi Lin;Jean-Yves Ramel;Raffaella Lanzarotti
{"title":"特约编辑 基于图形的方法和应用的新趋势和新进展","authors":"Alessandro D'Amelio;Jianyi Lin;Jean-Yves Ramel;Raffaella Lanzarotti","doi":"10.1109/TETC.2024.3374581","DOIUrl":null,"url":null,"abstract":"The integration of graph structures in diverse domains has recently garnered substantial attention, presenting a paradigm shift from classical euclidean representations. This new trend is driven by the advent of novel algorithms that can capture complex relationships through a class of neural architectures: the Graph Neural Networks (GNNs) [1], [2]. These networks are adept at handling data that can be effectively modeled as graphs, introducing a new representation learning paradigm. The significance of GNNs extends to several domains, including computer vision [3], [4], natural language processing [5], chemistry/biology [6], physics [7], traffic networks [8], and recommendation systems [9].","PeriodicalId":13156,"journal":{"name":"IEEE Transactions on Emerging Topics in Computing","volume":"12 1","pages":"122-125"},"PeriodicalIF":5.1000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10474156","citationCount":"0","resultStr":"{\"title\":\"Guest Editorial Emerging Trends and Advances in Graph-Based Methods and Applications\",\"authors\":\"Alessandro D'Amelio;Jianyi Lin;Jean-Yves Ramel;Raffaella Lanzarotti\",\"doi\":\"10.1109/TETC.2024.3374581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integration of graph structures in diverse domains has recently garnered substantial attention, presenting a paradigm shift from classical euclidean representations. This new trend is driven by the advent of novel algorithms that can capture complex relationships through a class of neural architectures: the Graph Neural Networks (GNNs) [1], [2]. These networks are adept at handling data that can be effectively modeled as graphs, introducing a new representation learning paradigm. The significance of GNNs extends to several domains, including computer vision [3], [4], natural language processing [5], chemistry/biology [6], physics [7], traffic networks [8], and recommendation systems [9].\",\"PeriodicalId\":13156,\"journal\":{\"name\":\"IEEE Transactions on Emerging Topics in Computing\",\"volume\":\"12 1\",\"pages\":\"122-125\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10474156\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Emerging Topics in Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10474156/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10474156/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

最近,图结构在不同领域的整合引起了广泛关注,这是对经典欧几里得表示法的范式转变。新算法的出现推动了这一新趋势,它们可以通过一类神经架构捕捉复杂的关系:图神经网络(GNN)[1], [2]。这些网络善于处理可有效建模为图的数据,从而引入了一种新的表征学习范式。图神经网络的意义已扩展到多个领域,包括计算机视觉 [3]、[4]、自然语言处理 [5]、化学/生物学 [6]、物理学 [7]、交通网络 [8] 和推荐系统 [9]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Guest Editorial Emerging Trends and Advances in Graph-Based Methods and Applications
The integration of graph structures in diverse domains has recently garnered substantial attention, presenting a paradigm shift from classical euclidean representations. This new trend is driven by the advent of novel algorithms that can capture complex relationships through a class of neural architectures: the Graph Neural Networks (GNNs) [1], [2]. These networks are adept at handling data that can be effectively modeled as graphs, introducing a new representation learning paradigm. The significance of GNNs extends to several domains, including computer vision [3], [4], natural language processing [5], chemistry/biology [6], physics [7], traffic networks [8], and recommendation systems [9].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Emerging Topics in Computing
IEEE Transactions on Emerging Topics in Computing Computer Science-Computer Science (miscellaneous)
CiteScore
12.10
自引率
5.10%
发文量
113
期刊介绍: IEEE Transactions on Emerging Topics in Computing publishes papers on emerging aspects of computer science, computing technology, and computing applications not currently covered by other IEEE Computer Society Transactions. Some examples of emerging topics in computing include: IT for Green, Synthetic and organic computing structures and systems, Advanced analytics, Social/occupational computing, Location-based/client computer systems, Morphic computer design, Electronic game systems, & Health-care IT.
期刊最新文献
Table of Contents Front Cover IEEE Transactions on Emerging Topics in Computing Information for Authors Special Section on Emerging Social Computing DALTON - Deep Local Learning in SNNs via local Weights and Surrogate-Derivative Transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1