近似局部二进制模式网络的近距离传感器处理加速器

IF 5.1 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Emerging Topics in Computing Pub Date : 2023-06-16 DOI:10.1109/TETC.2023.3285493
Shaahin Angizi;Mehrdad Morsali;Sepehr Tabrizchi;Arman Roohi
{"title":"近似局部二进制模式网络的近距离传感器处理加速器","authors":"Shaahin Angizi;Mehrdad Morsali;Sepehr Tabrizchi;Arman Roohi","doi":"10.1109/TETC.2023.3285493","DOIUrl":null,"url":null,"abstract":"In this work, a high-speed and energy-efficient comparator-based \n<underline>N</u>\near-\n<underline>S</u>\nensor \n<underline>L</u>\nocal \n<underline>B</u>\ninary \n<underline>P</u>\nattern accelerator architecture (NS-LBP) is proposed to execute a novel local binary pattern deep neural network. First, inspired by recent LBP networks, we design an approximate, hardware-oriented, and multiply-accumulate (MAC)-free network named Ap-LBP for efficient feature extraction, further reducing the computation complexity. Then, we develop NS-LBP as a processing-in-SRAM unit and a parallel in-memory LBP algorithm to process images near the sensor in a cache, remarkably reducing the power consumption of data transmission to an off-chip processor. Our circuit-to-application co-simulation results on MNIST and SVHN datasets demonstrate minor accuracy degradation compared to baseline CNN and LBP-network models, while NS-LBP achieves 1.25 GHz and an energy-efficiency of 37.4 TOPS/W. NS-LBP reduces energy consumption by 2.2× and execution time by a factor of 4× compared to the best recent LBP-based networks.","PeriodicalId":13156,"journal":{"name":"IEEE Transactions on Emerging Topics in Computing","volume":"12 1","pages":"73-83"},"PeriodicalIF":5.1000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Near-Sensor Processing Accelerator for Approximate Local Binary Pattern Networks\",\"authors\":\"Shaahin Angizi;Mehrdad Morsali;Sepehr Tabrizchi;Arman Roohi\",\"doi\":\"10.1109/TETC.2023.3285493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a high-speed and energy-efficient comparator-based \\n<underline>N</u>\\near-\\n<underline>S</u>\\nensor \\n<underline>L</u>\\nocal \\n<underline>B</u>\\ninary \\n<underline>P</u>\\nattern accelerator architecture (NS-LBP) is proposed to execute a novel local binary pattern deep neural network. First, inspired by recent LBP networks, we design an approximate, hardware-oriented, and multiply-accumulate (MAC)-free network named Ap-LBP for efficient feature extraction, further reducing the computation complexity. Then, we develop NS-LBP as a processing-in-SRAM unit and a parallel in-memory LBP algorithm to process images near the sensor in a cache, remarkably reducing the power consumption of data transmission to an off-chip processor. Our circuit-to-application co-simulation results on MNIST and SVHN datasets demonstrate minor accuracy degradation compared to baseline CNN and LBP-network models, while NS-LBP achieves 1.25 GHz and an energy-efficiency of 37.4 TOPS/W. NS-LBP reduces energy consumption by 2.2× and execution time by a factor of 4× compared to the best recent LBP-based networks.\",\"PeriodicalId\":13156,\"journal\":{\"name\":\"IEEE Transactions on Emerging Topics in Computing\",\"volume\":\"12 1\",\"pages\":\"73-83\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Emerging Topics in Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10154569/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10154569/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种基于比较器的高速节能近传感器局部二进制模式加速器架构(NS-LBP),用于执行新型局部二进制模式深度神经网络。首先,受近期局部二进制模式网络的启发,我们设计了一种近似的、面向硬件的、无乘法累加(MAC)的网络,命名为 Ap-LBP,用于高效特征提取,进一步降低了计算复杂度。然后,我们开发了 NS-LBP 作为 SRAM 处理单元和并行内存 LBP 算法,在缓存中处理传感器附近的图像,从而显著降低了向片外处理器传输数据的功耗。我们在 MNIST 和 SVHN 数据集上进行的电路到应用联合仿真结果表明,与基线 CNN 和 LBP 网络模型相比,NS-LBP 的准确度下降幅度较小,而 NS-LBP 的主频为 1.25 GHz,能效为 37.4 TOPS/W。与基于 LBP 的最新最佳网络相比,NS-LBP 的能耗降低了 2.2 倍,执行时间缩短了 4 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Near-Sensor Processing Accelerator for Approximate Local Binary Pattern Networks
In this work, a high-speed and energy-efficient comparator-based N ear- S ensor L ocal B inary P attern accelerator architecture (NS-LBP) is proposed to execute a novel local binary pattern deep neural network. First, inspired by recent LBP networks, we design an approximate, hardware-oriented, and multiply-accumulate (MAC)-free network named Ap-LBP for efficient feature extraction, further reducing the computation complexity. Then, we develop NS-LBP as a processing-in-SRAM unit and a parallel in-memory LBP algorithm to process images near the sensor in a cache, remarkably reducing the power consumption of data transmission to an off-chip processor. Our circuit-to-application co-simulation results on MNIST and SVHN datasets demonstrate minor accuracy degradation compared to baseline CNN and LBP-network models, while NS-LBP achieves 1.25 GHz and an energy-efficiency of 37.4 TOPS/W. NS-LBP reduces energy consumption by 2.2× and execution time by a factor of 4× compared to the best recent LBP-based networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Emerging Topics in Computing
IEEE Transactions on Emerging Topics in Computing Computer Science-Computer Science (miscellaneous)
CiteScore
12.10
自引率
5.10%
发文量
113
期刊介绍: IEEE Transactions on Emerging Topics in Computing publishes papers on emerging aspects of computer science, computing technology, and computing applications not currently covered by other IEEE Computer Society Transactions. Some examples of emerging topics in computing include: IT for Green, Synthetic and organic computing structures and systems, Advanced analytics, Social/occupational computing, Location-based/client computer systems, Morphic computer design, Electronic game systems, & Health-care IT.
期刊最新文献
Table of Contents Front Cover IEEE Transactions on Emerging Topics in Computing Information for Authors Special Section on Emerging Social Computing DALTON - Deep Local Learning in SNNs via local Weights and Surrogate-Derivative Transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1