用于流式关键词搜索 (KWS) 的基于 FeFET 的 ADC 偏移稳健计算内存架构

IF 5.1 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Emerging Topics in Computing Pub Date : 2023-12-28 DOI:10.1109/TETC.2023.3345346
Yandong Luo;Johan Vanderhaegen;Oleg Rybakov;Martin Kraemer;Niel Warren;Shimeng Yu
{"title":"用于流式关键词搜索 (KWS) 的基于 FeFET 的 ADC 偏移稳健计算内存架构","authors":"Yandong Luo;Johan Vanderhaegen;Oleg Rybakov;Martin Kraemer;Niel Warren;Shimeng Yu","doi":"10.1109/TETC.2023.3345346","DOIUrl":null,"url":null,"abstract":"Keyword spotting (KWS) on edge devices requires low power consumption and real-time response. In this work, a ferroelectric field-effect transistor (FeFET)-based compute-in-memory (CIM) architecture is proposed for streaming KWS processing. Compared with the conventional sequential processing scheme, the inference latency is reduced by 7.7 × ∼17.6× without energy efficiency loss. To make the KWS models robust to hardware non-idealities such as analog-to-digital converter (ADC) offset, an offset-aware training scheme is proposed. It consists of ADC offset noise injection and frame-wise normalization. This scheme effectively improves the mean accuracy and chip yield by 1.5%∼5.2%, and 5%∼39%, for TC-ResNet and DS-TC-ResNet (with MatchboxNet configuration), respectively. The proposed CIM architecture is implemented with ferroelectric field-effect transistor technology, with simulated low energy consumption of 1.65 μJ/decision for 12-word keyword spotting using TC-ResNet8.","PeriodicalId":13156,"journal":{"name":"IEEE Transactions on Emerging Topics in Computing","volume":"12 1","pages":"23-34"},"PeriodicalIF":5.1000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A FeFET-Based ADC Offset Robust Compute-In-Memory Architecture for Streaming Keyword Spotting (KWS)\",\"authors\":\"Yandong Luo;Johan Vanderhaegen;Oleg Rybakov;Martin Kraemer;Niel Warren;Shimeng Yu\",\"doi\":\"10.1109/TETC.2023.3345346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Keyword spotting (KWS) on edge devices requires low power consumption and real-time response. In this work, a ferroelectric field-effect transistor (FeFET)-based compute-in-memory (CIM) architecture is proposed for streaming KWS processing. Compared with the conventional sequential processing scheme, the inference latency is reduced by 7.7 × ∼17.6× without energy efficiency loss. To make the KWS models robust to hardware non-idealities such as analog-to-digital converter (ADC) offset, an offset-aware training scheme is proposed. It consists of ADC offset noise injection and frame-wise normalization. This scheme effectively improves the mean accuracy and chip yield by 1.5%∼5.2%, and 5%∼39%, for TC-ResNet and DS-TC-ResNet (with MatchboxNet configuration), respectively. The proposed CIM architecture is implemented with ferroelectric field-effect transistor technology, with simulated low energy consumption of 1.65 μJ/decision for 12-word keyword spotting using TC-ResNet8.\",\"PeriodicalId\":13156,\"journal\":{\"name\":\"IEEE Transactions on Emerging Topics in Computing\",\"volume\":\"12 1\",\"pages\":\"23-34\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Emerging Topics in Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10375917/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10375917/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

边缘设备上的关键词定位(KWS)要求低功耗和实时响应。本研究提出了一种基于铁电场效应晶体管(FeFET)的内存计算(CIM)架构,用于流式 KWS 处理。与传统的顺序处理方案相比,推理延迟减少了 7.7 × ∼ 17.6 倍,且没有能效损失。为了使 KWS 模型对模数转换器(ADC)偏移等硬件非理想情况具有鲁棒性,提出了一种偏移感知训练方案。它包括模数转换器偏移噪声注入和按帧归一化。对于 TC-ResNet 和 DS-TC-ResNet(采用 MatchboxNet 配置),该方案可分别将平均精度和芯片良率有效提高 1.5%∼5.2% 和 5%∼39%。拟议的 CIM 架构采用铁电场效应晶体管技术实现,在使用 TC-ResNet8 进行 12 个单词的关键词定位时,模拟能耗低至 1.65 μJ/decision。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A FeFET-Based ADC Offset Robust Compute-In-Memory Architecture for Streaming Keyword Spotting (KWS)
Keyword spotting (KWS) on edge devices requires low power consumption and real-time response. In this work, a ferroelectric field-effect transistor (FeFET)-based compute-in-memory (CIM) architecture is proposed for streaming KWS processing. Compared with the conventional sequential processing scheme, the inference latency is reduced by 7.7 × ∼17.6× without energy efficiency loss. To make the KWS models robust to hardware non-idealities such as analog-to-digital converter (ADC) offset, an offset-aware training scheme is proposed. It consists of ADC offset noise injection and frame-wise normalization. This scheme effectively improves the mean accuracy and chip yield by 1.5%∼5.2%, and 5%∼39%, for TC-ResNet and DS-TC-ResNet (with MatchboxNet configuration), respectively. The proposed CIM architecture is implemented with ferroelectric field-effect transistor technology, with simulated low energy consumption of 1.65 μJ/decision for 12-word keyword spotting using TC-ResNet8.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Emerging Topics in Computing
IEEE Transactions on Emerging Topics in Computing Computer Science-Computer Science (miscellaneous)
CiteScore
12.10
自引率
5.10%
发文量
113
期刊介绍: IEEE Transactions on Emerging Topics in Computing publishes papers on emerging aspects of computer science, computing technology, and computing applications not currently covered by other IEEE Computer Society Transactions. Some examples of emerging topics in computing include: IT for Green, Synthetic and organic computing structures and systems, Advanced analytics, Social/occupational computing, Location-based/client computer systems, Morphic computer design, Electronic game systems, & Health-care IT.
期刊最新文献
Table of Contents Front Cover IEEE Transactions on Emerging Topics in Computing Information for Authors Special Section on Emerging Social Computing DALTON - Deep Local Learning in SNNs via local Weights and Surrogate-Derivative Transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1