Linnet Bischof, Franziska Schweitzer, Hans-Peter Schmitz, Jürgen J. Heinisch
{"title":"酵母小 GTP 酶 Rho5 需要特定的线粒体外膜蛋白才能在氧化应激下进行转运,并与 VDAC Por1 相互作用。","authors":"Linnet Bischof, Franziska Schweitzer, Hans-Peter Schmitz, Jürgen J. Heinisch","doi":"10.1016/j.ejcb.2024.151405","DOIUrl":null,"url":null,"abstract":"<div><p>Yeast Rho5 is a small GTPase which mediates the response to nutrient and oxidative stress, and triggers mitophagy and apoptosis. We here studied the rapid translocation of a GFP-tagged Rho5 to mitochondria under such stress conditions by live-cell fluorescence microscopy in the background of strains lacking different mitochondrial outer membrane proteins (MOMP). Fun14, Msp1 and Alo1 were found to be required for efficient recruitment of the GTPase, whereas translocation of Dck1 and Lmo1, the subunits of its dimeric GDP/GTP exchange factor (GEF), remained unaffected. An influence of the voltage-dependent anion channel (VDAC) Por1 on the association of GFP-Rho5 with mitochondria under oxidative stress conditions appeared to be strain-dependent. However, epistasis analyses and bimolecular fluorescence complementation (BiFC) studies indicate a genetic and physical interaction. All four strains lacking a single MOMP were investigated for their effect on mitophagy.</p></div>","PeriodicalId":12010,"journal":{"name":"European journal of cell biology","volume":"103 2","pages":"Article 151405"},"PeriodicalIF":4.5000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0171933524000220/pdfft?md5=2d55ac6b32853bfa5e71c7b6ab106a18&pid=1-s2.0-S0171933524000220-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The small yeast GTPase Rho5 requires specific mitochondrial outer membrane proteins for translocation under oxidative stress and interacts with the VDAC Por1\",\"authors\":\"Linnet Bischof, Franziska Schweitzer, Hans-Peter Schmitz, Jürgen J. Heinisch\",\"doi\":\"10.1016/j.ejcb.2024.151405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Yeast Rho5 is a small GTPase which mediates the response to nutrient and oxidative stress, and triggers mitophagy and apoptosis. We here studied the rapid translocation of a GFP-tagged Rho5 to mitochondria under such stress conditions by live-cell fluorescence microscopy in the background of strains lacking different mitochondrial outer membrane proteins (MOMP). Fun14, Msp1 and Alo1 were found to be required for efficient recruitment of the GTPase, whereas translocation of Dck1 and Lmo1, the subunits of its dimeric GDP/GTP exchange factor (GEF), remained unaffected. An influence of the voltage-dependent anion channel (VDAC) Por1 on the association of GFP-Rho5 with mitochondria under oxidative stress conditions appeared to be strain-dependent. However, epistasis analyses and bimolecular fluorescence complementation (BiFC) studies indicate a genetic and physical interaction. All four strains lacking a single MOMP were investigated for their effect on mitophagy.</p></div>\",\"PeriodicalId\":12010,\"journal\":{\"name\":\"European journal of cell biology\",\"volume\":\"103 2\",\"pages\":\"Article 151405\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0171933524000220/pdfft?md5=2d55ac6b32853bfa5e71c7b6ab106a18&pid=1-s2.0-S0171933524000220-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European journal of cell biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0171933524000220\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of cell biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0171933524000220","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
The small yeast GTPase Rho5 requires specific mitochondrial outer membrane proteins for translocation under oxidative stress and interacts with the VDAC Por1
Yeast Rho5 is a small GTPase which mediates the response to nutrient and oxidative stress, and triggers mitophagy and apoptosis. We here studied the rapid translocation of a GFP-tagged Rho5 to mitochondria under such stress conditions by live-cell fluorescence microscopy in the background of strains lacking different mitochondrial outer membrane proteins (MOMP). Fun14, Msp1 and Alo1 were found to be required for efficient recruitment of the GTPase, whereas translocation of Dck1 and Lmo1, the subunits of its dimeric GDP/GTP exchange factor (GEF), remained unaffected. An influence of the voltage-dependent anion channel (VDAC) Por1 on the association of GFP-Rho5 with mitochondria under oxidative stress conditions appeared to be strain-dependent. However, epistasis analyses and bimolecular fluorescence complementation (BiFC) studies indicate a genetic and physical interaction. All four strains lacking a single MOMP were investigated for their effect on mitophagy.
期刊介绍:
The European Journal of Cell Biology, a journal of experimental cell investigation, publishes reviews, original articles and short communications on the structure, function and macromolecular organization of cells and cell components. Contributions focusing on cellular dynamics, motility and differentiation, particularly if related to cellular biochemistry, molecular biology, immunology, neurobiology, and developmental biology are encouraged. Manuscripts describing significant technical advances are also welcome. In addition, papers dealing with biomedical issues of general interest to cell biologists will be published. Contributions addressing cell biological problems in prokaryotes and plants are also welcome.