{"title":"平面逆流水道中的壁面效应","authors":"Luca Galantucci, Michele Sciacca","doi":"10.1515/jnet-2023-0123","DOIUrl":null,"url":null,"abstract":"In this paper, we study the influence of the boundary conditions of the velocity fields in superfluid helium counterflow experiments. To make progress, we perform numerical simulations where we allow a slip velocity of the viscous component at the walls, and observe how this impacts on velocity fields and density profiles of distribution of quantized vortices. We conclude that the presence of a slip velocity at the walls generates a more homogeneous vortex distribution throughout the channel.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"25 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The wall effect in a plane counterflow channel\",\"authors\":\"Luca Galantucci, Michele Sciacca\",\"doi\":\"10.1515/jnet-2023-0123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the influence of the boundary conditions of the velocity fields in superfluid helium counterflow experiments. To make progress, we perform numerical simulations where we allow a slip velocity of the viscous component at the walls, and observe how this impacts on velocity fields and density profiles of distribution of quantized vortices. We conclude that the presence of a slip velocity at the walls generates a more homogeneous vortex distribution throughout the channel.\",\"PeriodicalId\":16428,\"journal\":{\"name\":\"Journal of Non-Equilibrium Thermodynamics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Non-Equilibrium Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/jnet-2023-0123\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Equilibrium Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/jnet-2023-0123","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
In this paper, we study the influence of the boundary conditions of the velocity fields in superfluid helium counterflow experiments. To make progress, we perform numerical simulations where we allow a slip velocity of the viscous component at the walls, and observe how this impacts on velocity fields and density profiles of distribution of quantized vortices. We conclude that the presence of a slip velocity at the walls generates a more homogeneous vortex distribution throughout the channel.
期刊介绍:
The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on a) newly observed non-equilibrium phenomena, b) analytic or numeric modeling for their interpretation, c) vanguard methods to describe non-equilibrium phenomena.
Contributions should – among others – present novel approaches to analyzing, modeling and optimizing processes of engineering relevance such as transport processes of mass, momentum and energy, separation of fluid phases, reproduction of living cells, or energy conversion. The journal is particularly interested in contributions which add to the basic understanding of non-equilibrium phenomena in science and engineering, with systems of interest ranging from the macro- to the nano-level.
The Journal of Non-Equilibrium Thermodynamics has recently expanded its scope to place new emphasis on theoretical and experimental investigations of non-equilibrium phenomena in thermophysical, chemical, biochemical and abstract model systems of engineering relevance. We are therefore pleased to invite submissions which present newly observed non-equilibrium phenomena, analytic or fuzzy models for their interpretation, or new methods for their description.