{"title":"线性化 Eringen-Cattaneo-Christov-Straughan 模型下的咽腔声前传播","authors":"Vittorio Zampoli, Pedro M. Jordan","doi":"10.1515/jnet-2023-0121","DOIUrl":null,"url":null,"abstract":"Employing the Laplace transform and its properties, we investigate the evolution of the coupled thermal and fluid-acoustic waveforms that arise in a signaling problem under the Eringen–Cattaneo–Christov–Straughan model of poroacoustic phenomena. Assuming a Heaviside temperature input, we determine the effects of what we term the “Eringen coefficient” by examining the propagation and evolution of the resulting shock and/or acceleration waveforms. Special/limiting cases are also discussed and, in the final section of this Note, possible follow-on studies are suggested.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"42 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poroacoustic front propagation under the linearized Eringen–Cattaneo–Christov–Straughan model\",\"authors\":\"Vittorio Zampoli, Pedro M. Jordan\",\"doi\":\"10.1515/jnet-2023-0121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Employing the Laplace transform and its properties, we investigate the evolution of the coupled thermal and fluid-acoustic waveforms that arise in a signaling problem under the Eringen–Cattaneo–Christov–Straughan model of poroacoustic phenomena. Assuming a Heaviside temperature input, we determine the effects of what we term the “Eringen coefficient” by examining the propagation and evolution of the resulting shock and/or acceleration waveforms. Special/limiting cases are also discussed and, in the final section of this Note, possible follow-on studies are suggested.\",\"PeriodicalId\":16428,\"journal\":{\"name\":\"Journal of Non-Equilibrium Thermodynamics\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Non-Equilibrium Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/jnet-2023-0121\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Equilibrium Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/jnet-2023-0121","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Poroacoustic front propagation under the linearized Eringen–Cattaneo–Christov–Straughan model
Employing the Laplace transform and its properties, we investigate the evolution of the coupled thermal and fluid-acoustic waveforms that arise in a signaling problem under the Eringen–Cattaneo–Christov–Straughan model of poroacoustic phenomena. Assuming a Heaviside temperature input, we determine the effects of what we term the “Eringen coefficient” by examining the propagation and evolution of the resulting shock and/or acceleration waveforms. Special/limiting cases are also discussed and, in the final section of this Note, possible follow-on studies are suggested.
期刊介绍:
The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on a) newly observed non-equilibrium phenomena, b) analytic or numeric modeling for their interpretation, c) vanguard methods to describe non-equilibrium phenomena.
Contributions should – among others – present novel approaches to analyzing, modeling and optimizing processes of engineering relevance such as transport processes of mass, momentum and energy, separation of fluid phases, reproduction of living cells, or energy conversion. The journal is particularly interested in contributions which add to the basic understanding of non-equilibrium phenomena in science and engineering, with systems of interest ranging from the macro- to the nano-level.
The Journal of Non-Equilibrium Thermodynamics has recently expanded its scope to place new emphasis on theoretical and experimental investigations of non-equilibrium phenomena in thermophysical, chemical, biochemical and abstract model systems of engineering relevance. We are therefore pleased to invite submissions which present newly observed non-equilibrium phenomena, analytic or fuzzy models for their interpretation, or new methods for their description.