{"title":"新型高效纳米催化剂 Hercynite@SiO2@Tris 催化的吡喃并[2,3-c]吡唑和 2-氨基-4H-苯并[b]吡喃的一锅多组分合成反应","authors":"Shima Beiranvand, Masoomeh Norouzi, Bahman Tahmasbi","doi":"10.2174/0113852728270373240222095835","DOIUrl":null,"url":null,"abstract":": In this study, magnetic hercynite nanoparticles (FeAl2O4, MNPs) were functionalized by cheap and readily available tris(hydroxymethyl)aminomethane (Tris) as an organocatalyst. Various techniques, including Vibrating Sample Magnetometry (VSM), Energy Dispersive X-ray Spectroscopy (EDS), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Thermogravimetric Analysis (TG) were employed to determine the morphology, particle size, physical properties, and magnetic properties of the nanoparticles. Additionally, Fourier transform infrared spectroscopy (FT-IR) techniques were used to investigate the presence of the functional group. The activity of this new catalyst as a magnetically recoverable nanocatalyst was investigated in the synthesis of oxygen and nitrogen-containing heterocyclic compounds. Pyranoprazole and 2-amino-4Hbenzo[ b]pyrans compounds were synthesized with high efficiency in a short time. FeAl2O4@SiO2@Tris can be separated using magnetic attraction and reused up to 5 consecutive times without a significant decrease in the yield of target products or catalytic activity.","PeriodicalId":10926,"journal":{"name":"Current Organic Chemistry","volume":"14 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-Pot Multicomponent Synthesis of Pyrano[2,3-c]pyrazole and 2-Amino-4Hbenzo[ b]pyrans Catalyzed by Hercynite@SiO2@Tris as Novel and Efficient Nanocatalyst\",\"authors\":\"Shima Beiranvand, Masoomeh Norouzi, Bahman Tahmasbi\",\"doi\":\"10.2174/0113852728270373240222095835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": In this study, magnetic hercynite nanoparticles (FeAl2O4, MNPs) were functionalized by cheap and readily available tris(hydroxymethyl)aminomethane (Tris) as an organocatalyst. Various techniques, including Vibrating Sample Magnetometry (VSM), Energy Dispersive X-ray Spectroscopy (EDS), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Thermogravimetric Analysis (TG) were employed to determine the morphology, particle size, physical properties, and magnetic properties of the nanoparticles. Additionally, Fourier transform infrared spectroscopy (FT-IR) techniques were used to investigate the presence of the functional group. The activity of this new catalyst as a magnetically recoverable nanocatalyst was investigated in the synthesis of oxygen and nitrogen-containing heterocyclic compounds. Pyranoprazole and 2-amino-4Hbenzo[ b]pyrans compounds were synthesized with high efficiency in a short time. FeAl2O4@SiO2@Tris can be separated using magnetic attraction and reused up to 5 consecutive times without a significant decrease in the yield of target products or catalytic activity.\",\"PeriodicalId\":10926,\"journal\":{\"name\":\"Current Organic Chemistry\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2174/0113852728270373240222095835\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0113852728270373240222095835","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
One-Pot Multicomponent Synthesis of Pyrano[2,3-c]pyrazole and 2-Amino-4Hbenzo[ b]pyrans Catalyzed by Hercynite@SiO2@Tris as Novel and Efficient Nanocatalyst
: In this study, magnetic hercynite nanoparticles (FeAl2O4, MNPs) were functionalized by cheap and readily available tris(hydroxymethyl)aminomethane (Tris) as an organocatalyst. Various techniques, including Vibrating Sample Magnetometry (VSM), Energy Dispersive X-ray Spectroscopy (EDS), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Thermogravimetric Analysis (TG) were employed to determine the morphology, particle size, physical properties, and magnetic properties of the nanoparticles. Additionally, Fourier transform infrared spectroscopy (FT-IR) techniques were used to investigate the presence of the functional group. The activity of this new catalyst as a magnetically recoverable nanocatalyst was investigated in the synthesis of oxygen and nitrogen-containing heterocyclic compounds. Pyranoprazole and 2-amino-4Hbenzo[ b]pyrans compounds were synthesized with high efficiency in a short time. FeAl2O4@SiO2@Tris can be separated using magnetic attraction and reused up to 5 consecutive times without a significant decrease in the yield of target products or catalytic activity.
期刊介绍:
Current Organic Chemistry aims to provide in-depth/mini reviews on the current progress in various fields related to organic chemistry including bioorganic chemistry, organo-metallic chemistry, asymmetric synthesis, heterocyclic chemistry, natural product chemistry, catalytic and green chemistry, suitable aspects of medicinal chemistry and polymer chemistry, as well as analytical methods in organic chemistry. The frontier reviews provide the current state of knowledge in these fields and are written by chosen experts who are internationally known for their eminent research contributions. The Journal also accepts high quality research papers focusing on hot topics, highlights and letters besides thematic issues in these fields. Current Organic Chemistry should prove to be of great interest to organic chemists in academia and industry, who wish to keep abreast with recent developments in key fields of organic chemistry.