ZmGLK36和ZmGDIα-hel的基因金字塔作用增强玉米对粗矮病的抗性

IF 2.6 3区 农林科学 Q1 AGRONOMY Molecular Breeding Pub Date : 2024-03-19 DOI:10.1007/s11032-024-01466-9
Gongjian Li, Zhennan Xu, Jianjun Wang, Chunhua Mu, Zhiqiang Zhou, Mingshun Li, Zhuanfang Hao, Degui Zhang, Hongjun Yong, Jienan Han, Xinhai Li, Jiqiang Zhao, Jianfeng Weng
{"title":"ZmGLK36和ZmGDIα-hel的基因金字塔作用增强玉米对粗矮病的抗性","authors":"Gongjian Li, Zhennan Xu, Jianjun Wang, Chunhua Mu, Zhiqiang Zhou, Mingshun Li, Zhuanfang Hao, Degui Zhang, Hongjun Yong, Jienan Han, Xinhai Li, Jiqiang Zhao, Jianfeng Weng","doi":"10.1007/s11032-024-01466-9","DOIUrl":null,"url":null,"abstract":"<p>Maize rough dwarf disease (MRDD) caused by pathogenic viruses in the genus <i>Fijivirus</i> in the family Reoviridae is one of the most destructive diseases in maize. The pyramiding of effective resistance genes into maize varieties is a potential approach to reduce the damage resulting from the disease. Two major quantitative trait loci (QTLs) (<i>qMrdd2</i> and <i>qMrdd8</i>) have been previously identified. The resistance genes <i>ZmGLK36</i> and <i>ZmGDIα-hel</i> have also been cloned with the functional markers Indel-26 and IDP25K, respectively. In this study, <i>ZmGLK36</i> and <i>ZmGDIα-hel</i> were introgressed to improve MRDD resistance of maize lines (Zheng58, Chang7-2, B73, Mo17, and their derived hybrids Zhengdan958 and B73 × Mo17) via marker-assisted selection (MAS). The converted lines and their derived hybrids, carrying one or two genes, were evaluated for MRDD resistance using artificial inoculation methods. The double-gene pyramiding lines and their derived hybrids exhibited increased resistance to MRDD compared to the monogenic lines and the respective hybrids. The genetic backgrounds of the converted lines were highly similar (90.85–98.58%) to the recurrent parents. In addition, agronomic trait evaluation demonstrated that pyramiding lines with one or two genes and their derived hybrids were not significantly different from the recurrent parents and their hybrids under nonpathogenic stress, including period traits (tasseling, pollen shedding, and silking), yield traits (ear length, grain weight per ear and 100-kernel weight) and quality traits (protein and starch content). There were differences in plant architecture traits between the improved lines and their hybrids. This study illustrated the successful development of gene pyramiding for improving MRDD resistance by advancing the breeding process.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"22 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gene pyramiding of ZmGLK36 and ZmGDIα-hel for rough dwarf disease resistance in maize\",\"authors\":\"Gongjian Li, Zhennan Xu, Jianjun Wang, Chunhua Mu, Zhiqiang Zhou, Mingshun Li, Zhuanfang Hao, Degui Zhang, Hongjun Yong, Jienan Han, Xinhai Li, Jiqiang Zhao, Jianfeng Weng\",\"doi\":\"10.1007/s11032-024-01466-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Maize rough dwarf disease (MRDD) caused by pathogenic viruses in the genus <i>Fijivirus</i> in the family Reoviridae is one of the most destructive diseases in maize. The pyramiding of effective resistance genes into maize varieties is a potential approach to reduce the damage resulting from the disease. Two major quantitative trait loci (QTLs) (<i>qMrdd2</i> and <i>qMrdd8</i>) have been previously identified. The resistance genes <i>ZmGLK36</i> and <i>ZmGDIα-hel</i> have also been cloned with the functional markers Indel-26 and IDP25K, respectively. In this study, <i>ZmGLK36</i> and <i>ZmGDIα-hel</i> were introgressed to improve MRDD resistance of maize lines (Zheng58, Chang7-2, B73, Mo17, and their derived hybrids Zhengdan958 and B73 × Mo17) via marker-assisted selection (MAS). The converted lines and their derived hybrids, carrying one or two genes, were evaluated for MRDD resistance using artificial inoculation methods. The double-gene pyramiding lines and their derived hybrids exhibited increased resistance to MRDD compared to the monogenic lines and the respective hybrids. The genetic backgrounds of the converted lines were highly similar (90.85–98.58%) to the recurrent parents. In addition, agronomic trait evaluation demonstrated that pyramiding lines with one or two genes and their derived hybrids were not significantly different from the recurrent parents and their hybrids under nonpathogenic stress, including period traits (tasseling, pollen shedding, and silking), yield traits (ear length, grain weight per ear and 100-kernel weight) and quality traits (protein and starch content). There were differences in plant architecture traits between the improved lines and their hybrids. This study illustrated the successful development of gene pyramiding for improving MRDD resistance by advancing the breeding process.</p>\",\"PeriodicalId\":18769,\"journal\":{\"name\":\"Molecular Breeding\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Breeding\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11032-024-01466-9\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Breeding","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11032-024-01466-9","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

由 Reoviridae 科 Fijivirus 属致病性病毒引起的玉米粗缩病(MRDD)是玉米中最具破坏性的病害之一。在玉米品种中加入有效的抗病基因是减少该病危害的一种潜在方法。此前已确定了两个主要的数量性状位点(QTL)(qMrdd2 和 qMrdd8)。抗性基因 ZmGLK36 和 ZmGDIα-hel 也已被克隆,并分别带有功能标记 Indel-26 和 IDP25K。本研究通过标记辅助选择(MAS),将ZmGLK36和ZmGDIα-hel导入玉米品系(Zheng58、Chang7-2、B73、Mo17及其衍生杂交种Zhengdan958和B73×Mo17),以提高其抗MRDD能力。利用人工接种方法,对携带一个或两个基因的转化品系及其衍生杂交种的 MRDD 抗性进行了评估。与单基因品系和各自的杂交种相比,双基因金字塔品系及其衍生杂交种表现出更强的抗 MRDD 能力。转化品系的遗传背景与重复亲本高度相似(90.85%-98.58%)。此外,农艺性状评价表明,在非病原胁迫下,带有一个或两个基因的金字塔型品系及其衍生杂交种与经常性亲本及其杂交种没有显著差异,包括期性状(抽穗、花粉脱落和吐丝)、产量性状(穗长、每穗粒重和百粒重)和品质性状(蛋白质和淀粉含量)。改良品系及其杂交种的植株结构性状存在差异。这项研究说明,通过推进育种进程,成功开发了基因金字塔技术,以提高 MRDD 抗性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gene pyramiding of ZmGLK36 and ZmGDIα-hel for rough dwarf disease resistance in maize

Maize rough dwarf disease (MRDD) caused by pathogenic viruses in the genus Fijivirus in the family Reoviridae is one of the most destructive diseases in maize. The pyramiding of effective resistance genes into maize varieties is a potential approach to reduce the damage resulting from the disease. Two major quantitative trait loci (QTLs) (qMrdd2 and qMrdd8) have been previously identified. The resistance genes ZmGLK36 and ZmGDIα-hel have also been cloned with the functional markers Indel-26 and IDP25K, respectively. In this study, ZmGLK36 and ZmGDIα-hel were introgressed to improve MRDD resistance of maize lines (Zheng58, Chang7-2, B73, Mo17, and their derived hybrids Zhengdan958 and B73 × Mo17) via marker-assisted selection (MAS). The converted lines and their derived hybrids, carrying one or two genes, were evaluated for MRDD resistance using artificial inoculation methods. The double-gene pyramiding lines and their derived hybrids exhibited increased resistance to MRDD compared to the monogenic lines and the respective hybrids. The genetic backgrounds of the converted lines were highly similar (90.85–98.58%) to the recurrent parents. In addition, agronomic trait evaluation demonstrated that pyramiding lines with one or two genes and their derived hybrids were not significantly different from the recurrent parents and their hybrids under nonpathogenic stress, including period traits (tasseling, pollen shedding, and silking), yield traits (ear length, grain weight per ear and 100-kernel weight) and quality traits (protein and starch content). There were differences in plant architecture traits between the improved lines and their hybrids. This study illustrated the successful development of gene pyramiding for improving MRDD resistance by advancing the breeding process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Breeding
Molecular Breeding 农林科学-农艺学
CiteScore
5.60
自引率
6.50%
发文量
67
审稿时长
1.5 months
期刊介绍: Molecular Breeding is an international journal publishing papers on applications of plant molecular biology, i.e., research most likely leading to practical applications. The practical applications might relate to the Developing as well as the industrialised World and have demonstrable benefits for the seed industry, farmers, processing industry, the environment and the consumer. All papers published should contribute to the understanding and progress of modern plant breeding, encompassing the scientific disciplines of molecular biology, biochemistry, genetics, physiology, pathology, plant breeding, and ecology among others. Molecular Breeding welcomes the following categories of papers: full papers, short communications, papers describing novel methods and review papers. All submission will be subject to peer review ensuring the highest possible scientific quality standards. Molecular Breeding core areas: Molecular Breeding will consider manuscripts describing contemporary methods of molecular genetics and genomic analysis, structural and functional genomics in crops, proteomics and metabolic profiling, abiotic stress and field evaluation of transgenic crops containing particular traits. Manuscripts on marker assisted breeding are also of major interest, in particular novel approaches and new results of marker assisted breeding, QTL cloning, integration of conventional and marker assisted breeding, and QTL studies in crop plants.
期刊最新文献
Genome-Wide Association Study on Cowpea seed coat color using RGB images. Map-based cloning and characterization of yg-2, a gene conferring yellow-green leaf in tomato (Solanum lycopersicum). Mapping of dwarfing gene and identification of mutant allele on plant height in wheat. Genome wide association study and transcriptome analysis identify candidate genes regulating wheat coleoptile length. Recent progress in the understanding of Citrus Huanglongbing: from the perspective of pathogen and citrus host.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1