新型色烯并[2,3-d]嘧啶酮作为三阴性乳腺癌治疗药物的体外和体内评估

IF 3.597 Q2 Pharmacology, Toxicology and Pharmaceutics MedChemComm Pub Date : 2024-03-19 DOI:10.1039/D3MD00682D
Luísa Carvalho, Fábio Pedroso de Lima, Mónica Cerqueira, Ana Silva, Olívia Pontes, Sofia Oliveira-Pinto, Sara Guerreiro, Marta D. Costa, Sara Granja, Patrícia Maciel, Adhemar Longatto-Filho, Fátima Baltazar, Fernanda Proença and Marta Costa
{"title":"新型色烯并[2,3-d]嘧啶酮作为三阴性乳腺癌治疗药物的体外和体内评估","authors":"Luísa Carvalho, Fábio Pedroso de Lima, Mónica Cerqueira, Ana Silva, Olívia Pontes, Sofia Oliveira-Pinto, Sara Guerreiro, Marta D. Costa, Sara Granja, Patrícia Maciel, Adhemar Longatto-Filho, Fátima Baltazar, Fernanda Proença and Marta Costa","doi":"10.1039/D3MD00682D","DOIUrl":null,"url":null,"abstract":"<p >Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, and the limited therapeutic options show poor efficacy in patients, associated to severe side effects and development of resistance. Considering that chromene-based scaffolds proved to be attractive candidates for cancer therapy, herein we prepared new chromeno[2,3-<em>d</em>]pyrimidinone derivatives by a simple two step procedure, starting from the reaction of cyanoacetamide and a salicylaldehyde. A cell viability screening in several breast cancer cell lines allowed to identify two promising compounds with IC<small><sub>50</sub></small> values in the low micromolar range for TNBC cells. These chromenes inhibited cell proliferation, induced cell cycle arrest and triggered cell death through apoptosis. <em>In vivo</em> studies revealed a safe profile in invertebrate and vertebrate animal models and confirmed their capacity to inhibit tumor growth in the CAM model, inducing significant tumor regression after 4 days of treatment. The two compounds identified in this study are promising drug candidates for TNBC treatment and valuable hits for future optimization, using the versatile synthetic platform that was developed.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 4","pages":" 1362-1380"},"PeriodicalIF":3.5970,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vitro and in vivo evaluation of novel chromeno[2,3-d]pyrimidinones as therapeutic agents for triple negative breast cancer†\",\"authors\":\"Luísa Carvalho, Fábio Pedroso de Lima, Mónica Cerqueira, Ana Silva, Olívia Pontes, Sofia Oliveira-Pinto, Sara Guerreiro, Marta D. Costa, Sara Granja, Patrícia Maciel, Adhemar Longatto-Filho, Fátima Baltazar, Fernanda Proença and Marta Costa\",\"doi\":\"10.1039/D3MD00682D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, and the limited therapeutic options show poor efficacy in patients, associated to severe side effects and development of resistance. Considering that chromene-based scaffolds proved to be attractive candidates for cancer therapy, herein we prepared new chromeno[2,3-<em>d</em>]pyrimidinone derivatives by a simple two step procedure, starting from the reaction of cyanoacetamide and a salicylaldehyde. A cell viability screening in several breast cancer cell lines allowed to identify two promising compounds with IC<small><sub>50</sub></small> values in the low micromolar range for TNBC cells. These chromenes inhibited cell proliferation, induced cell cycle arrest and triggered cell death through apoptosis. <em>In vivo</em> studies revealed a safe profile in invertebrate and vertebrate animal models and confirmed their capacity to inhibit tumor growth in the CAM model, inducing significant tumor regression after 4 days of treatment. The two compounds identified in this study are promising drug candidates for TNBC treatment and valuable hits for future optimization, using the versatile synthetic platform that was developed.</p>\",\"PeriodicalId\":88,\"journal\":{\"name\":\"MedChemComm\",\"volume\":\" 4\",\"pages\":\" 1362-1380\"},\"PeriodicalIF\":3.5970,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MedChemComm\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/md/d3md00682d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedChemComm","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/md/d3md00682d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

三阴性乳腺癌(TNBC)是乳腺癌中最具侵袭性的亚型,有限的治疗方案对患者的疗效不佳,且副作用严重,还会产生耐药性。考虑到基于铬的支架被证明是具有吸引力的候选癌症疗法,我们在此通过简单的两步法制备了新的铬并[2,3-d]嘧啶酮衍生物,该衍生物由氰基乙酰胺和水杨醛反应开始。通过对几种乳腺癌细胞系进行细胞活力筛选,确定了两种有前景的化合物,它们对 TNBC 细胞的 IC50 值在低微摩尔范围内。这些铬烯化合物能抑制细胞增殖、诱导细胞周期停滞并引发细胞凋亡。体内研究显示,这两种化合物在无脊椎动物和脊椎动物模型中具有安全特性,并证实了它们在 CAM 模型中抑制肿瘤生长的能力,在治疗 4 天后可诱导肿瘤显著消退。本研究发现的这两种化合物是治疗 TNBC 的有希望的候选药物,也是利用所开发的多功能合成平台进行未来优化的有价值的新化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In vitro and in vivo evaluation of novel chromeno[2,3-d]pyrimidinones as therapeutic agents for triple negative breast cancer†

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, and the limited therapeutic options show poor efficacy in patients, associated to severe side effects and development of resistance. Considering that chromene-based scaffolds proved to be attractive candidates for cancer therapy, herein we prepared new chromeno[2,3-d]pyrimidinone derivatives by a simple two step procedure, starting from the reaction of cyanoacetamide and a salicylaldehyde. A cell viability screening in several breast cancer cell lines allowed to identify two promising compounds with IC50 values in the low micromolar range for TNBC cells. These chromenes inhibited cell proliferation, induced cell cycle arrest and triggered cell death through apoptosis. In vivo studies revealed a safe profile in invertebrate and vertebrate animal models and confirmed their capacity to inhibit tumor growth in the CAM model, inducing significant tumor regression after 4 days of treatment. The two compounds identified in this study are promising drug candidates for TNBC treatment and valuable hits for future optimization, using the versatile synthetic platform that was developed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MedChemComm
MedChemComm BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
4.70
自引率
0.00%
发文量
0
审稿时长
2.2 months
期刊介绍: Research and review articles in medicinal chemistry and related drug discovery science; the official journal of the European Federation for Medicinal Chemistry. In 2020, MedChemComm will change its name to RSC Medicinal Chemistry. Issue 12, 2019 will be the last issue as MedChemComm.
期刊最新文献
Back cover Introduction to the themed collection in honour of Professor Christian Leumann Back cover Correction: computational design, synthesis, and assessment of 3-(4-(4-(1,3,4-oxadiazol-2-yl)-1H-imidazol-2-yl)phenyl)-1,2,4-oxadiazole derivatives as effective epidermal growth factor receptor inhibitors: a prospective strategy for anticancer therapy Introduction to the themed collection on ‘AI in Medicinal Chemistry’
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1