{"title":"FADO:基于合成和分析模型的平面图感知指令优化,适用于多芯片 FPGA 上的高层合成设计","authors":"Linfeng Du, Tingyuan Liang, Xiaofeng Zhou, Jinming Ge, Shangkun Li, Sharad Sinha, Jieru Zhao, Zhiyao Xie, Wei Zhang","doi":"10.1145/3653458","DOIUrl":null,"url":null,"abstract":"<p>Multi-die FPGAs are widely adopted for large-scale accelerators, but optimizing high-level synthesis designs on these FPGAs faces two challenges. First, the delay caused by die-crossing nets creates an NP-hard floorplanning problem. Second, traditional directive optimization cannot consider resource constraints on each die or the timing issue incurred by the die-crossings. Furthermore, the high algorithmic complexity and the large scale lead to extended runtime for legalizing the floorplan of HLS designs under different directive configurations. </p><p>To co-optimize the directives and floorplan of HLS designs on multi-die FPGAs, we formulate the co-search based on bin-packing variants and present two iterative optimization flows. The first (FADO 1.0) relies on a pre-built QoR library. It involves a greedy, latency-bottleneck-guided directive search and an incremental floorplan legalization. Compared with a global floorplanning solution, it takes 693X ∼ 4925X shorter search time and achieves 1.16X ∼ 8.78X better design performance, measured in workload execution time. </p><p>To remove the time-consuming QoR library generation, the second flow (FADO 2.0) integrates an analytical QoR model and redesigns the directive search to accelerate convergence. Through experiments on mixed dataflow and non-dataflow designs, compared with 1.0, FADO 2.0 further yields a 1.40X better design performance on average after implementation on the Alveo U250 FPGA.</p>","PeriodicalId":49248,"journal":{"name":"ACM Transactions on Reconfigurable Technology and Systems","volume":"22 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FADO: Floorplan-Aware Directive Optimization Based on Synthesis and Analytical Models for High-Level Synthesis Designs on Multi-Die FPGAs\",\"authors\":\"Linfeng Du, Tingyuan Liang, Xiaofeng Zhou, Jinming Ge, Shangkun Li, Sharad Sinha, Jieru Zhao, Zhiyao Xie, Wei Zhang\",\"doi\":\"10.1145/3653458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multi-die FPGAs are widely adopted for large-scale accelerators, but optimizing high-level synthesis designs on these FPGAs faces two challenges. First, the delay caused by die-crossing nets creates an NP-hard floorplanning problem. Second, traditional directive optimization cannot consider resource constraints on each die or the timing issue incurred by the die-crossings. Furthermore, the high algorithmic complexity and the large scale lead to extended runtime for legalizing the floorplan of HLS designs under different directive configurations. </p><p>To co-optimize the directives and floorplan of HLS designs on multi-die FPGAs, we formulate the co-search based on bin-packing variants and present two iterative optimization flows. The first (FADO 1.0) relies on a pre-built QoR library. It involves a greedy, latency-bottleneck-guided directive search and an incremental floorplan legalization. Compared with a global floorplanning solution, it takes 693X ∼ 4925X shorter search time and achieves 1.16X ∼ 8.78X better design performance, measured in workload execution time. </p><p>To remove the time-consuming QoR library generation, the second flow (FADO 2.0) integrates an analytical QoR model and redesigns the directive search to accelerate convergence. Through experiments on mixed dataflow and non-dataflow designs, compared with 1.0, FADO 2.0 further yields a 1.40X better design performance on average after implementation on the Alveo U250 FPGA.</p>\",\"PeriodicalId\":49248,\"journal\":{\"name\":\"ACM Transactions on Reconfigurable Technology and Systems\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Reconfigurable Technology and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3653458\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Reconfigurable Technology and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3653458","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
FADO: Floorplan-Aware Directive Optimization Based on Synthesis and Analytical Models for High-Level Synthesis Designs on Multi-Die FPGAs
Multi-die FPGAs are widely adopted for large-scale accelerators, but optimizing high-level synthesis designs on these FPGAs faces two challenges. First, the delay caused by die-crossing nets creates an NP-hard floorplanning problem. Second, traditional directive optimization cannot consider resource constraints on each die or the timing issue incurred by the die-crossings. Furthermore, the high algorithmic complexity and the large scale lead to extended runtime for legalizing the floorplan of HLS designs under different directive configurations.
To co-optimize the directives and floorplan of HLS designs on multi-die FPGAs, we formulate the co-search based on bin-packing variants and present two iterative optimization flows. The first (FADO 1.0) relies on a pre-built QoR library. It involves a greedy, latency-bottleneck-guided directive search and an incremental floorplan legalization. Compared with a global floorplanning solution, it takes 693X ∼ 4925X shorter search time and achieves 1.16X ∼ 8.78X better design performance, measured in workload execution time.
To remove the time-consuming QoR library generation, the second flow (FADO 2.0) integrates an analytical QoR model and redesigns the directive search to accelerate convergence. Through experiments on mixed dataflow and non-dataflow designs, compared with 1.0, FADO 2.0 further yields a 1.40X better design performance on average after implementation on the Alveo U250 FPGA.
期刊介绍:
TRETS is the top journal focusing on research in, on, and with reconfigurable systems and on their underlying technology. The scope, rationale, and coverage by other journals are often limited to particular aspects of reconfigurable technology or reconfigurable systems. TRETS is a journal that covers reconfigurability in its own right.
Topics that would be appropriate for TRETS would include all levels of reconfigurable system abstractions and all aspects of reconfigurable technology including platforms, programming environments and application successes that support these systems for computing or other applications.
-The board and systems architectures of a reconfigurable platform.
-Programming environments of reconfigurable systems, especially those designed for use with reconfigurable systems that will lead to increased programmer productivity.
-Languages and compilers for reconfigurable systems.
-Logic synthesis and related tools, as they relate to reconfigurable systems.
-Applications on which success can be demonstrated.
The underlying technology from which reconfigurable systems are developed. (Currently this technology is that of FPGAs, but research on the nature and use of follow-on technologies is appropriate for TRETS.)
In considering whether a paper is suitable for TRETS, the foremost question should be whether reconfigurability has been essential to success. Topics such as architecture, programming languages, compilers, and environments, logic synthesis, and high performance applications are all suitable if the context is appropriate. For example, an architecture for an embedded application that happens to use FPGAs is not necessarily suitable for TRETS, but an architecture using FPGAs for which the reconfigurability of the FPGAs is an inherent part of the specifications (perhaps due to a need for re-use on multiple applications) would be appropriate for TRETS.