通过传统算法和深度学习方法的对比分析加强焊缝检测

IF 2.6 3区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Journal of Nondestructive Evaluation Pub Date : 2024-03-18 DOI:10.1007/s10921-024-01047-y
Baoxin Zhang, Xiaopeng Wang, Jinhan Cui, Juntao Wu, Zhi Xiong, Wenpin Zhang, Xinghua Yu
{"title":"通过传统算法和深度学习方法的对比分析加强焊缝检测","authors":"Baoxin Zhang,&nbsp;Xiaopeng Wang,&nbsp;Jinhan Cui,&nbsp;Juntao Wu,&nbsp;Zhi Xiong,&nbsp;Wenpin Zhang,&nbsp;Xinghua Yu","doi":"10.1007/s10921-024-01047-y","DOIUrl":null,"url":null,"abstract":"<div><p>Automated inspection is vital in modern industrial manufacturing, optimizing production processes and ensuring product quality. Welding, a widely used joining technique, is susceptible to defects like porosity and cracks, compromising product reliability. Traditional nondestructive testing (NDT) methods suffer from inefficiency and limited accuracy. Many researchers have tried to apply deep learning for defect detection to address these limitations. This study compares traditional algorithms with deep learning methods, specifically evaluating the SwinUNet model for weld segmentation. The model achieves an impressive F1 score of 96.31, surpassing traditional algorithms. Feature analysis utilizing class activation maps confirms the model's robust recognition and generalization capabilities. Additionally, segmentation results for different welding defects were compared among various models, further substantiating the recognition capabilities of SwinUNet. The findings contribute to the automation of weld identification and segmentation, driving industrial production efficiency and enhancing defect detection.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"43 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Weld Inspection Through Comparative Analysis of Traditional Algorithms and Deep Learning Approaches\",\"authors\":\"Baoxin Zhang,&nbsp;Xiaopeng Wang,&nbsp;Jinhan Cui,&nbsp;Juntao Wu,&nbsp;Zhi Xiong,&nbsp;Wenpin Zhang,&nbsp;Xinghua Yu\",\"doi\":\"10.1007/s10921-024-01047-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Automated inspection is vital in modern industrial manufacturing, optimizing production processes and ensuring product quality. Welding, a widely used joining technique, is susceptible to defects like porosity and cracks, compromising product reliability. Traditional nondestructive testing (NDT) methods suffer from inefficiency and limited accuracy. Many researchers have tried to apply deep learning for defect detection to address these limitations. This study compares traditional algorithms with deep learning methods, specifically evaluating the SwinUNet model for weld segmentation. The model achieves an impressive F1 score of 96.31, surpassing traditional algorithms. Feature analysis utilizing class activation maps confirms the model's robust recognition and generalization capabilities. Additionally, segmentation results for different welding defects were compared among various models, further substantiating the recognition capabilities of SwinUNet. The findings contribute to the automation of weld identification and segmentation, driving industrial production efficiency and enhancing defect detection.</p></div>\",\"PeriodicalId\":655,\"journal\":{\"name\":\"Journal of Nondestructive Evaluation\",\"volume\":\"43 2\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nondestructive Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10921-024-01047-y\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-024-01047-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

自动检测在现代工业制造中至关重要,它可以优化生产流程,确保产品质量。焊接作为一种广泛使用的连接技术,很容易出现气孔和裂缝等缺陷,从而影响产品的可靠性。传统的无损检测(NDT)方法效率低下,精度有限。许多研究人员尝试将深度学习应用于缺陷检测,以解决这些局限性。本研究比较了传统算法和深度学习方法,特别评估了用于焊缝分割的 SwinUNet 模型。该模型的 F1 分数高达 96.31,超过了传统算法。利用类激活图进行的特征分析证实了该模型强大的识别和泛化能力。此外,还比较了不同模型对不同焊接缺陷的分割结果,进一步证实了 SwinUNet 的识别能力。这些发现有助于实现焊缝识别和分割的自动化,提高工业生产效率并加强缺陷检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing Weld Inspection Through Comparative Analysis of Traditional Algorithms and Deep Learning Approaches

Automated inspection is vital in modern industrial manufacturing, optimizing production processes and ensuring product quality. Welding, a widely used joining technique, is susceptible to defects like porosity and cracks, compromising product reliability. Traditional nondestructive testing (NDT) methods suffer from inefficiency and limited accuracy. Many researchers have tried to apply deep learning for defect detection to address these limitations. This study compares traditional algorithms with deep learning methods, specifically evaluating the SwinUNet model for weld segmentation. The model achieves an impressive F1 score of 96.31, surpassing traditional algorithms. Feature analysis utilizing class activation maps confirms the model's robust recognition and generalization capabilities. Additionally, segmentation results for different welding defects were compared among various models, further substantiating the recognition capabilities of SwinUNet. The findings contribute to the automation of weld identification and segmentation, driving industrial production efficiency and enhancing defect detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nondestructive Evaluation
Journal of Nondestructive Evaluation 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
7.10%
发文量
67
审稿时长
9 months
期刊介绍: Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.
期刊最新文献
Electromagnetic Radiation Characteristics and Mechanical Properties of Cement-Mortar Under Impact Load Instance Segmentation XXL-CT Challenge of a Historic Airplane Publisher Correction: Intelligent Extraction of Surface Cracks on LNG Outer Tanks Based on Close-Range Image Point Clouds and Infrared Imagery Acoustic Emission Signal Feature Extraction for Bearing Faults Using ACF and GMOMEDA Modeling and Analysis of Ellipticity Dispersion Characteristics of Lamb Waves in Pre-stressed Plates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1